当前位置:首页 > 电源 > 数字电源
[导读]摘要:重点介绍了一种基于ETX模块的新型显示系统的设计,主要包括模拟视频信号的数字转换和LVDS视频总线设计。文中给出了模拟显示信号到数字RGB转换电路的设计,介绍了高质量的液晶显示技术,并且给出了视频发送电路

摘要:重点介绍了一种基于ETX模块的新型显示系统的设计,主要包括模拟视频信号的数字转换和LVDS视频总线设计。文中给出了模拟显示信号到数字RGB转换电路的设计,介绍了高质量的液晶显示技术,并且给出了视频发送电路和视频接收电路的具体设计,经过验证表明该设计合理可行。文章揭示了视频发展的趋势和新技术,在显示系统设计中具有典型性和实用性。
关键词:视频;嵌入式;接口;低电压差分信号

0 引言
    随着数字电子技术的发展,嵌入式计算机逐渐开始显露头角,并以强大的功能证明自己的存在。其中视频系统的发展最引入注目,从最初简单的指示灯,到能显示数字、字母的数码管,直到能显示汉字的LCD视频的出现,显示质量和信息量不断提高。伴随着导航系统的发展和对战场态势终端显示的需要,对视频系统提出了更高的要求,需要能实时、动态地显示导航信息、地形地貌、态势信息,同时还要兼容显示原CRT上的单色雷达画面。本文介绍了我们在满足视频新要求方面所做的一些工作。

1 显示系统设计基本原理
    要支持丰富多彩的视频显示,这对CPU模块提出了很高的要求,通常纯粹的单片嵌入式CPU(例如DSP等)已不能胜任,必须另行选择。图象显示不但要求极高的CPU主频和处理能力,也需要支持图形操作系统,至少具备能够驱动VGA(Video Graphics Array)以上分辨率的软硬件,能够为应用程序提供丰富的图形图像功能。利用PC机多年发展积累的软硬件资源,是一条事半功倍的简截途径。
    目前硬件上和PC机视频系统兼容的、能运行图形操作系统的CPU模块有许多种,其中德国JUMPtec公司的ETX系列经过加固能够满足抗恶劣环境要求。该系列模块体积小、功耗低、功能强大,具有以下特点:
    (1)处理器都采用P3以上的CPU,处理速度高;
    (2)单5V电源支持,简化整个嵌入式系统设计;
    (3)BIOS和PC机完全兼容,软件可以直接在PC机上开发而无需任何修改;
    (4)和PC机外部接口基本相同,例如提供IDE硬盘接口、串口、并口、USB口、PS/2接口等。在系统扩充功能上,提供PCI总线和传统的EISA总线接口。
    (5)视频接口提供VGA、INDS接口支持。
    通过ETX模块提供的丰富接口资源,可以方便地扩展系统所需的标准或非标准接口,同时由于ETX模块和通用PC机软硬件兼容,可以直接借用通用资源进行设计,大大简化系统设计的难度。

2 显示系统设计实现
    显示系统由液晶显示器、CPU模块、电源模块、IO模块和视频转换模块组成。组成如图1所示。


    CPU模块通过ISA总线访问IO接口;通过串口连接二线检测设备;通过LVDS信号输出到多功能显示器。
    IO模块能实现三种功能:外围通讯设备的接收和发送电路、GPS接收器数据接收电路和显示器按键控制电路,分别由三种电路实现。
    视频转换模块用于将原单色视频信号转换为可在LCD显示的数字信号,进行图像合成和放大处理后,用二选一电路选择显示彩色画面或原雷达单色画面。
    电源模块的输入电压为直流28V,经变换后为系统内各模块提供所需电压。
2.1 CPU模块设计
    CPU模块是系统主模块,即系统总线的主设备。CPU模块完成系统的数据处理及生成显示图象的功能,产生系统总线的地址信号、数据信号和控制信号。CPU模块功能框图见图2。


    CPU模块须提供串行EEPROM以装载LCD驱动软件,LCD的类型不同其驱动软件不同。根据EIX-C3提供的资料,串行EEPROM选用24C16芯片。  24C16的DDCDAT和DDCLK信号直接分别和ETX-C3的DDDA和DDCK信号连接。[!--empirenews.page--]
    考虑到普通硬盘无法满足抗恶劣环境要求,因此选用电子盘用于存放数字地图、数据库、操作系统及应用程序。电子盘采用FLASH芯片存储数据,用IDE控制器实现标准IDE接口和FLASH芯片之间数据交换。由于采用电子结构取代了普通硬盘的机械结构,所以使得抗震性能得到极大的提高。CPU模块通过IDE总线对电子盘模块访问。CPU模块发出的控制信号和地址信号经驱动电路和电子盘相连接。其16位数据接口直接和IDE总线相连。


2.2 IO接口模块设计
    IO接口模块实现主CPU模块与外围设备之间的通讯、GPS接收、显示器按键控制等功能。采用DSP控制器,用双口RAM与CPU模块交换数据,接口模块的组成示意图如图4所示。


    外围设备接口电路和GPS接收电路由可编程器件ispLSI1048E、TL16C554和MAX488实现。TL16C554是四路串行控制器,工作时钟选择3.686 4MHz,通过内部寄存器配置可以设置通讯最大速率为230400bps。当接收到外部数据时,TL16C554产生中断,该中断作为DSP中断源,由DSP接收中断并作相应处理后将数据存放在双口存储器中,同时设置标志通知主机读取。
    通讯模块为了实现键盘电路功能,采用了用ispLSI1048E可编程器件模拟键盘控制器8279的结构原理,这样利用了编程灵活性。键盘控制器(8279)的外部输入时钟为3M6864Hz,而8279的扫描时钟频率为100kHz。当导光板按键按下,并且通过扫描线信号变为低电平来确认按键被按下,则8279便通过发出IRQ9中断信号向主机申请中断,等待主机响应来处理。
2.3 视频模块设计
    视频模块有两个功能,一是LCD显示,二是雷达显示信号转换处理。下面分别加以叙述。
2.3.1 LCD显示
    采用LCD是解决嵌入式系统要求的高分辨率和小体积矛盾的有效途径。ETX模块支持标准接口的LCD。其接口是标准的40芯LCD输入插座,表1是LCD接口主要信号,其中信号方向相对于LCD模块。直接驱动LCD的电路比较简单,只要把CPU模块对应信号连接即可。

[!--empirenews.page--]
    采用直接的LCD驱动显示都是主机和显示器一体化结构,体积较大。而实际应用中由于空间有限,可以采用分体式设计,即把显示器和主机分开。这样主机和显示器及控制器之间使用长距离电缆连接,必须解决显示和控制信号长距离传输问题。LVDS即低电压差分信号技术是解决这一问题的关键。低压保证了较低的功耗和较高的信号频率,差分保证了长距离传输信号的品质。但是LVDS视频不是简单地将LCD信号一一转换为对应的差分信号,而是采用特别简洁的差分信号对。如图2所示,包括时钟信号对(TxCLK+,TxCLK-)和(Tx0-Tx2)三对信号。后三对差分信号是RGB颜色强度以及同步信号综合调制后的差分输出。在接收方,对LVDS差分信号合成后再还原成原来的时钟、颜色强度、同步信号等。在每一个接收端跨接120 Ω匹配电阻,用以稳定接收信号品质。在工程实践上,一定要和发送端共地,防止图像扭曲和浮动。在步板布线上,差分信号需要走平行等长线,并用地层隔离。
    LVDS接收器SN65LVDS86AQ是包含3路串行输入、7位并行输出移位寄存器和4路LVDS接收器的综合电路。4路接收器中的3路将3路LVDS串行输入转换为21路并行显示数据信号R0-R5、GO-G5、B0-B5、HS、VS、DE。另一路接收器将1路LVDS串行输入转换为时钟信号。SN65LVDS86AQ工作电压为3.3V,支持18位TFT显示器。
    模块中使用SN65LVDS84A(发送LVDS)和SN65LVDS86A(接收LVDS)进行INDS信号的转换,使得显示信号能够满足长距离传输的要求。
2. 3.2 雷达画面处理
    为了能将雷达画面显示在液晶显示器上,需要对雷达显示信号进行转换,使之满足LCD显示接口的要求,显示转换原理图见图5。


    该模块按功能分为数据采集电路、图像处理及存储电路、时钟电路、逻辑控制电路和显示通道二选一电路。
    数据采集电路用来采集由雷达画面显示的信号,该显示信号分为光栅显示信号和随机显示信号两种。
    随机法显示信号分为X、Y、Z三个信号,X、Y为地址位置,Z为随机法辉度。其中X和Y是正负电平输入,Z是正电平输入。X、Y形成一个地址码,将相应的Z信号存在这个地址中。
    光栅扫描信号分为X、Y、S三个信号,X行扫描,Y为帧扫描,S为扫描法辉度。其中X和Y是正负电平输入,S是正电平输入。由X、Y可以得到一个地址码,将相应的S信号存在这个地址中。
    X、Y的电压值在屏幕上的位置如图6所示。X、Y的电压值和采样值的关系见图6。


    图像处理及存储电路对X和Y的采样值进行地址换算产生地址,同时对Z信号或S信号采样产生数据,按照地址将数据存入双口存储器。利用ETX模块输出的CLK、行同步、帧同步、数据使能等信号做为同步信号,将双口存储器的数据读出并放在LCD接口的G0~G5上,即可在LCD上显示绿色雷达画面。
    由于显示图像是根据XY的值在显示器的相应位置显示出辉亮信息,所以在接收新数据前应该先将存储器清零,否则画面会显示以前的信息。原雷达画面是单绿色显示,所以将处理后的信号接到液晶屏的绿信号上,液晶屏的红(R0~R5)和蓝信号(B0~B5)直接接地。
    时钟电路给所需的采样、同步、计数器提供工作时钟。使用ETX模块输出的LVDS解码后的25MHz时钟作为视频转换模块的时钟,对该时钟4分频产生6.25MHz时钟作为采样时钟;使用经LVDS解码后的行同步和帧同步作为视频转换模块的时钟行同步和帧同步信号。
    显示通道选择。显示器分时显示地图画面和雷达画面,在显示器面板上增加一个通道选择按键,该按键产生高低电平控制二选一电路,从而达到画面切换的目的,电路用244驱动器实现二选一功能。
2.4 LCD设计
    液晶显示屏为6.5"LCD彩色显示屏,为了适应环境,应具有高亮度、宽温、强阳光下可视、抗强振动冲击、防电磁干扰、轻量化、以及可靠性高等特点。
    分辨率:800×600;
    亮度调节范围:0.15~1000cd/m2
    视场角:水平+85°/-85°,垂直+85°/-85°;
    显示屏接口:数字RGB(16位);
    背光:高亮LED。

3 结束语
    显示系统在不断地发展。根据以上原理,我们研制了多用途显示系统,通用性强,接口简单,经使用证明图像清晰、画面稳定,说明设计合理、稳定可靠。数字视频技术是视频发展的一个重要趋势,必将应用在更广泛的领域。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭