当前位置:首页 > 电源 > 数字电源
[导读]摘要 介绍了基于TMS320C6713的信号采集处理系统。该系统以TMS320C6713作为核心控制器,通过多通道音频串行口(McASP)与A/D芯片PCM4204连接。系统充分利用McASP接口多通道的特点,设计了16通道麦克风阵列采集处理平台

摘要 介绍了基于TMS320C6713的信号采集处理系统。该系统以TMS320C6713作为核心控制器,通过多通道音频串行口(McASP)与A/D芯片PCM4204连接。系统充分利用McASP接口多通道的特点,设计了16通道麦克风阵列采集处理平台,并通过外扩USB芯片与PC主机端进行数据传输,方便用户在PC端进行数据处理。该系统采样数据量大、同步性强、精确度高、传输速率快、可靠性好,方便为各种麦克风阵列应用提供原始数据。
关键词 数据采集;麦克风阵列;多通道音频串口

    作为传统的语音拾取工具,单个孤立麦克风在噪声处理、声源定位和跟踪,语音提取和分离等方面存在不足,严重影响了语音通信质量。如果使用多个麦克风组成阵列,在时频域的基础上增加一个空间域,对来自空间不同方向的信号进行实时处理,就可以弥补上述不足。现在已有的麦克风阵列采集处理系统中,大多采用4路麦克风阵列,这类系统虽然在一定程度上能解决语音增强、噪音抑制、声源定位和回声抵消等问题,但由于4个麦克风个数较少,只能组成一字线阵,十字阵等几种特定的阵列形状,三维空间的方向及距离判断有较大的误差。设计的16通道麦克风采集系统能够组成麦克风面阵,弥补了上述不足,较好地解决了三维空间信号位置判断的问题。

1 硬件系统设计
    该硬件系统主要包括16路麦克风构成的阵列、A/D采样模块、DSP数据处理模块、PC机,如图1所示。


1.1 麦克风阵列
    该系统中,麦克风阵列选用声望公司的MPA416传声器。MPA416传声器的灵敏度可达50 mV/Pa;拥有低本底噪声;频率响应范围20 Hz~20 kHz;当其用于阵列时,MPA416的相位差能控制在3°~5°,能满足系统对精确度和稳定性的要求。
1.2 A/D采样模块
    A/D采样模块由4片PCM4204以及其外围电路组成。PCM4204内置了4个同步采样通道,支持音频串口和DSD数据口。音频串口模式时,输出24位线性PCM码,有主、被动两种工作模式,支持左、右对齐,I2S和TDM数据格式,动态范围为118 dB,最高采样频率216 kHz。系统选用1片PCM4204采用主动工作模式,其余3片PCM4204采用被动工作模式。通过音频串口将外部采集的模拟声音信号转化为24位I2S格式数字信号。
    由于前端麦克风阵列的输出信号不是差分信号,而PCM4204要求输入信号为差分信号,同时要求输入差分信号幅值在-0.3~-0.3+VccV之间,因此其每路信号的前端都应有一个缓冲电路,用来将所接收的麦克风信号转换为差分信号并对幅值进行调整。缓冲电路主要由OPA1632和OPA22组成,OPA1632和OPA227是高精度、音频差分放大器,缓冲电路如图2所示。

[!--empirenews.page--]
1.3 DSP数据处理模块
    设计中数据处理模块选择TI公司浮点DSP芯片TMS320C6713作为模块核心。TMS320C6713为高性能32位浮点DSP,适用于专业音频信号处理,其主频可达300 MHz,处理速度高达2 400 MIPS/1 800 MFLOPS。其内部采用改进的哈佛结构;具有256 kB的片内存储空间;丰富的外设包括两个多通道缓冲串口(McBSP)、两个多通道音频串口(McASP)、SPI和I2C等;增强的直接存储器访问(EDMA)控制器,可控制16个独立通道完成不受CPU干预的数据传输;32 bit的外部存储器接口(EMIF),能与SRAM、ERPOM、Flash、SBSRAM和SDRAM无缝连接。DSP数据处理模块框图如图3所示。


    其中,TMS320C6713通过McASP与前端的A/D采样模块相连,并利用EDMA数据传输速度快、传输量大,且不占用CPU时钟周期的特点,将采集数据转存至TMS320C6713的片内存储空间。TMS320C6713外接CPLD控制EMIF接口,通过对EMIF接口上CE3空间的控制,控制USB芯片CY7C680 01,完成TMS320C6713与PC机平台间的USB数据传输。
1.4 A/D采样模块与DSP数据处理模块接口设计
    4片PCM4204芯片与TMS320C6713的McASP1相连接,其连接示意图如图4所示。


    图4中,PCM4204 A采用主动工作模式,PCM4204B、PCM4204C和PCM4204D采用被动工作模式。系统采用I2S数据格式,PCM4204A的SDOUT1输出的是1和2通道的数据,SDOUT2输出的是3和4通道的数据;PCM4204B的SDOUT1输出的是5和6通道的数据,SDOUT2输出的是7和8通道的数据;PCM4204C的SDOUT1输出的是9和10通道的数据,SDOUT2输出的是11和12通道的数据;PCM4204D的SDOUT1输出的是13和14通道的数据,SDOUT2输出的是15和16通道的数据。[!--empirenews.page--]
    通过配置芯片引脚S/M、FMT2、FMT1、FMT0、FS2、FS1和:FS0对PCM4204进行设置。具体如下:
    对于PCM4204A,S/M=0,使PCM4204A工作在主模式下;对于PCM4204B、PCM4204C、PCM4204D,S/M=1,使PCM4204A工作在从模式下;
FMT2=0,FMT1=0,FMT0=1,选取音频数据格式为24 bit I2S;
    对于PCM4204A,FS2=0,FS1=0,FS0=1,选取采样速率为48 kHz;对于PCM4204B、PCM4204C、PCM4204D,FS2=0,FS1=0,FS0=0,选取采样速率为自动检测。
    经计算得,A/D采样模块采样速率为22 Mbit·s-1。
1.5 DSP数据处理模块USB接口设计
    TMS320C6713通过EMIF的CE3存储空间可以外扩USB2.0接口,因此在对外扩USB进行读/写访问前,需要通过EMIF的CE3控制寄存器CE3C-TL来配置CE3空间存储器接口的类型、存储器宽度及读写时序。
    CY7C68001采用并行异步存储器接口通过可编程逻辑芯片CPLD与TMS320C6713相连,其原理框图如图5所示。


    CY7C68001除了存储器接口外,还有1个中断信号和4个状态信号。中断信号采用TMS320C6713的外部中断EXT_INT6。
    TMS320C6713使用CY7C68001作为从设备。在这种模式下,DSP可以像读/写普通FIFO一样对CY7C68001内部的FIFO进行读/写。PC主机发出命令的同时也由CY7C68001 的引脚提供中断触发信号给DSP的EXT_INT6。其上升沿被检测到后,DSP就进入相应中断服务程序,开始处理USB的传输。DSP通过EA[4:2]连接FIFOA[2:0]对CY7C68001内部FIFO或命令口进行选择。读/写数据通过ED[15:0]与FIFO[15:0]连接进行。FIFO和命令口的选择和地址分配如表1所示。


    经实验验证,USB异步传输速率可达3 Mbit·s-1,满足系统需求。
1.6 PC机平台
    DSP数据处理模块通过USB接口与PC机相连,通过CY7C68001芯片,将前端采集的数据传输到PC机,方便对数据的进一步处理。

2 程序设计
2.1 McASP接口程序设计
    定义了4个寄存器组:全局寄存器组globalRegs、发送寄存器组xmtRegs、接收寄存器组mvRegs和串行化器控制寄存器组srctlRegs。通过这4个寄存器组,对McASP1的PFUNC,PDIR,SRCTL,RFMT,AFSRCTL,ACLKRCTL及AHCLKRCTL等寄存器进行设置。各寄存器组所包含的主要寄存器情况如表2所示。

[!--empirenews.page--]
    依据PCM4204的I2S数据格式,将接收帧同步信号的宽度定为32 bit,接收延迟设置为1个delay;AXR[0]~AXR[7]设置为接收模式。
    通过以下函数,完成对McASP1接口的配置
   

2.2 EDMA传输程序设计
    为保证数据的完整性,选用Ping-Pong模式对EDMA传输进行配置,Ping缓存存放如表3所示,Pong缓存与Ping缓存结构相同。


    依据Ping、Pong缓存数据格式,对EDMA接收进行配置,即对:EDMA的opt,src,cnt,dst,idx,及rld寄存器分别进行设置。通过opt寄存器设置数据长度为32 bit,源数据和目的数据为一维方式,源地址固定,目的地址采用索引,启用帧同步等。源地址和目的地址分别写入src,dst寄存器。cnt寄存器主要用于配置帧计数和单元计数。由于采用I2S的数据格式,所以1帧数据只包含2个单元数据。通过配置idex及rld寄存器,目的数据可以按照设定的索引方式存储。
2.3 DSP端OSB接口程序设计
    首先,通过调用用户的初始化函数,使能外部中断并初始化USB寄存器。之后,程序通过数据传输函数,完成DSP与PC机的数据传输。
    USB初始化程序配置如下:
    (1)使能外部中断6(EXT_INT6)。
    (2)加载USB描述表,并进行自举检测,如自举不成功,则重新自举,直到端点0收到设置包为止。
    (3)配置USB为异步从FIFO(Asynchronous SlaveFIFO)模式,采用内部48 MHz时钟源。
    (4)读取FNADDR寄存器,判断USB工作状态。
    (5)依据USB工作状态,配置EP2、EP4、EP6、EP8,并设置一次传送的Byte长度。设置EP2、EP4为BULK OUT,EP6、EP8为BULK IN,其缓冲大小分别为2×512 Byte。
    在数据传输过程中,PC端通过EP2向DSP发送读数据命令,DSP通过外部中断收到读命令后,使用EP6发送已采集好的数据。在声音数据采集系统中,每路麦克风以96 kHz进行24位采样,按照ping-pong方式进行存储。在传输过程中还需进行判断,当采集数据存储在ping缓存时,发送pong缓存中的数据,当采集数据存储在pong缓存时,发送ping缓存的数据。
    由于TMS320C6713通过EMIF的CE3存储空间可以外扩USB2.0接口,需对EMIF接口的CE3寄存器进行配置,将USB接口设为16位异步存储接口,设定读/写的建立时间(Setup)、促发时间(Strobe)、保持时间,使其满足CY7C68001的读/写时序要求。
2.4 PC机平台应用程序设计
    PC端接口程序采用VC++6.0编写,首先调用OpenDriver()打开USB接口设备,获得设备的句柄hDevice,之后调用Sx2SendVendorReq()函数向外设发出命令,读取USB配置,最后调用Sx2BulkdataTrans()进行数据传输,通过调用CFile类将接收到的数据存放在文本文件中。程序使用多线程技术,使得应用程序将USB数据传输在后台进行处理,应用程序前台还可进行其他操作。

3 结束语
    设计了16通道麦克风阵列采集处理平台,并通过外扩USB芯片与PC主机端进行数据传输,可使用户方便地在PC端进行数据处理。该系统采样数据量大、同步性强、精确度高、传输速率快、可靠性好,方便为各种麦克风阵列算法提供原始数据。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭