当前位置:首页 > 电源 > 数字电源
[导读] 一、 序言LED 照明产业发展到现在,我们对LED 照明产品标准和检测方法的回顾、小结的时候已经基本到来。传统的 LED 及其模块光、色、电参数检测方法有电脉冲驱动,CCD 快速光谱测量法,也有在一定的条件下,热平衡后的测

 

一、 序言

LED 照明产业发展到现在,我们对LED 照明产品标准和检测方法的回顾、小结的时候已经基本到来。传统的 LED 及其模块光、色、电参数检测方法有电脉冲驱动,CCD 快速光谱测量法,也有在一定的条件下,热平衡后的测量法,但这些方法的测量条件和结果与LED 进入照明器具内的实际工作情况都相差甚远。文章介绍了通过Vf—TJ 曲线的标出并控制LED 在控定的结温下测量其光、色、电参数不仅对采用LED的照明器具的如何保证LED 工作结温提供了目标限位,同时也使LED 及其模块的光、色、电参数的测量参数更接近于实际的应用条件。文章还介绍了采用LED的照明器具如测量LED 的结温并确定LED 参考点的限值温度与结温的函数关系。这对快速评估采用LED 的照明器具的工作状态和使用寿命提供了一个有效的途径。

二、 LED 模块的光电参数和检测方法的现状和改进方法

1、传统的LED 模块的检测方法

目前传统的 LED 模块的检测方法主要有两种,第一种是采用脉冲测量的方法,它是把照明LED 模块固定在测量装置上(例如积分球的测量位置等),采用脉冲恒流电源与瞬时测量光谱仪的同步联动,即对LED 发出数十毫秒~数佰毫秒恒流的脉冲电流的同时,同步打开瞬时测量光谱仪器的快门,对LED 发出的光参数(光通量、光色参数等)进行快速检测,同时,也同步采集LED 的正向压降和功率等参数。由于这种方式在检测过程中,LED 的结温几乎等同于室温,所以,测量结果的光效高,光色和电参数与实际使用情况有明显差异,这一般都是LED 芯片(器件)生产商采用的快速检测方法,而与LED 实际应用在最终照明器具中的状态不具有可参比性。

第二种检测方法是把LED模块安装在检测装置上后,可能带上一固定的散热器(也可能具有基座控温功能),给LED施加其声称的工作电流,受传统的照明光源检测方法的影响,也是等到LED达到热平衡后再开始测量它的光电参数。这种方法看似比较严密,但实际上,它的热平衡条件和工作条件与此类LED装入最终的照明器具中的状态仍没有好的关联性,因此所测的光电参数与今后实际的应用状态的参数仍不具有可参比性。已经颁布的GB/T24824—2009/CIE 127-2007NEQ《普通照明用LED模块的基本性能的测量方法》标准中,在这方面是这样规定的:“试验或测量时LED模块应工作在热平衡状态下,在监视环境温度的同时,最好能监视LED模块自身的工作温度,以保证试验的可复现性。如可能监测LED模块结电压,则应首选监测结电压。否则,应监测LED模块指定温度测量点的温度”。可见在监测结电压的条件下来测量LED 模块的光电参数是保证检测重现性的首选方案,但是,标准中没有指明在模拟实际使用结温条件下检测LED 模块的光、色、电参数。

2、LED 模块测量方法的改进

众所周知,LED 的光、电参数特性与它的工作时的结温密切相关,同一个LED 产品,结温的不会造成这些参数的明显不同,这也造成了同一个LED 光、色、电参数测量结果的明显不一致性,所以测量LED 的光电参数首先应考虑在设定的工作结温的条件下来进行。另外,LED 因为封装的工艺、材料等差异,其声称的最高工作结温是明显不同的,为了保证LED 照明产品具有高效、长寿的特点,LED 实际的工作结温应明显低于最高工作结温。例如,目前我们大量采用的LED 封装方法和技术,在LED 的发光面前,都具有高分子硅胶加荧光粉的覆盖层。实践证明,要使此类LED 照明器具,到70%的光通维持率的时间要≥6 万小时,其工作结温必须保持在70℃~75℃以下。从提高光效和使用寿命的角度来讲,LED 的工作结温能保持在60℃以下更好,但从照明器具的造型、体积、性价比来讲,则应该控制在能达到预期的光效和使用寿命的基础上把LED的最高工作结温控制在70℃~75℃最为合适。为了使LED 及其模块的光、色、电参数的检测也尽可能接近于实际应用的结温状态,就必须解决如何测量LED的结温并能在这一结温下进行光、色、电参数的检测问题。

(1)目前LED 的结温测量方法大概有

1)通过测量管脚温度和芯片耗散功率和热阻系数求得结温。但是因为耗散功率和热阻系数的不准确,所以测量精度比较低。

2)红外热成像法,利用红外非接触温度仪直接测量LED 芯片的温度,但要求被测器件处于未封装的状态,另外对LED 封装材料折射率有特殊要求,否则无法准确测量,测量精度比较低。

3)利用发光光谱峰位移测定结温,也是一种非接触的测量方法,直接从发光光谱确定禁带宽度移动技术来测量结温,这一方法对光谱测试仪器分辨精度要求较高,发光峰位的精度测定难度较大,而光谱峰位移1 纳米的误差变化就对应着测量结温约30 度的变化,所以测量精度和重复性都比较低。

4)向列型液晶热成像技术,对仪器分辨率要求高,只能测量未封装的单个裸芯片,不能测量封装后的LED。

5)利用二极管 PN 结电压与结温的Vf-TJ 关系曲线,来测量LED 的结温。

从上述介绍的各种 LED 结温的测量方法可看出,采用监视二极管PN 结电压的变化来推算结温的方法最具有可行性并且测量精度也最高,所以在很多集成IC 电路中,为了检测IC 芯片的工作结温,往往会刻出或值入1 个或几个二极管,通过测量其正向电压降的变化来达到测量芯片结温的目的。

(2)目前国际上较先进的Vf—TJ 测量方法

目前国际上先进的 Vf—TJ 测量方法是把被测的LED 连上引出线放入在硅油缸内,随后加热硅油缸使硅油的温度达到140℃左右,随后让缸内硅油自然冷却,只要冷却时硅油温度下降的速度足够慢,就可以认为LED 的结温与LED 的热沉的温度是基本一致的,在此过程中,根据所测的硅油温度,每下降2℃~10℃时瞬时给LED 输入规定的电流脉冲,并测量其在这一温度下的正向电压降,把这一测量点的温度和正向电压降导入到电脑软件的数据库,从140℃左右开始,随温度的下降,每下降一个设定的等分温度测量一次热沉温度和正向电压降,一直测量到25℃左右,当完成这一组测量数据并导入到电脑软件的数据库后,由软件产生一个Vf—TJ 曲线。这一方法属于在温度下降时测量方法,对于测量来说是可行的,但是因为试验室的环境温度是衡定的(一般为25℃),而硅油缸的油温是从高到低下降的,这就造成当硅油缸的油温较高时,因为与试验室环境温度的温差大而使冷却速度较快,为了保证测量的准确性采用了适当的措施使硅油缸在温度较高时温度下降不致于太快,但当硅油缸温度较低时,因为与室温的温差太小而使冷却的速度太慢,这大大延长了这一检测过程的测量时间。因为上述原因,这一温度下降时的测量方法在标定Vf—TJ 过程是不可能短的,(大约需4~5 小时),否则将产生明显的测量误差。另外,这种检测装置油缸是固定的,要测量第二组,时间很慢。还有上述加热装置是在硅油缸外面的底部,加热与控温以及测量的温度都存在明显的滞后,这也造成这一方法测量结温的准确性比较差。

(3)新的Vf—TJ 检测方法

本机构发明的检测方法是采用温度上升时的测量方法,采用电脑设定的PID(积分、微分加上加热与不加热时间比例控制)方法来加热和控制硅油缸的温度,即在硅油缸加热的起始段,加热时间与不加热时间的比例是很小的,并且可调,使硅油缸温度上升速率能保证LED 结温、热沉与硅油温度的一致性,随着硅油温度的逐步上升,与室温的温差也随之加大,此时PID 加热和控温系统会自动加大加热时间与不加热时间的比例,(实际加大了单位时间内的加热功率)所以能保证硅油缸内硅油的温度上升速率始终保持在设定的速率上,不会因为硅油温度与环境温度的差异不同而发生油温上升的速率不同。可以设定让硅油衡温在应用温度范围的任一温度值上,也可以实现0.1℃/分钟~2℃/分钟的升温速率。

在每次升温阶段后,具有一个衡温控制阶段,即升温阶段和衡温阶段形成了阶梯式控温曲线。随着温度阶梯式上升,测量正向电压可以设定成每上升0.5℃测量一次,并且可以以0.5℃的间隔,可逐步调整到每上升10℃测量一次。为了保证控温以及测量的温度的及时性,采用内置式加热,另外又为了保证硅油缸内油温的一致性,在油缸底部加有一个磁性感应的搅拌条,利用外部电机转动并通过磁感应带动这一搅拌磁条在油缸内转动,这一转动速度可调,从而保证了油缸内的硅油温差保持在0.2℃范围内。本测量装置因为硅油温度上升的速率几乎一致,并且实行阶梯式升温和控温,从而能保证在合理的温度上升速率的条件下得到准确的检测结果,并且检测时间(从25℃到140℃约为2.5 个小时左右)能明显低于目前国际上已有的检测装置的测量时间。目前国际上已有的检测装置是单硅油缸结构,本测量装置采用双硅油缸结构,当完成一组样品的测量后,更换一个硅油缸可立刻开始第二组LED 的检测。本测量装置在每一个测量温度点测得的温度和LED 正向电压降后,导入到数据库并由编制的软件生成Vf—TJ 曲线。

(4)照明LED 结温测量及利用Vf—TJ 关系曲线指导光、色、电参数的测量

得到被测 LED 的Vf—TJ 的曲线后,最重要的是用于定结温条件下的光、色、电参数测量。检测系统见图1。把被测LED 固定到带控温/恒温基座的积分球内,给LED 通以工作电流,给LED 燃点15~20 分钟基本达到稳定后,快速切换到测量电流(即前面标定Vf—TJ 曲线的测量电流)用数毫秒时间快速测定被测LED的正向电压Vf,通过与Vf—TJ 曲线中设定结温值对应的Vf 比较,如与目标值有差异,控制程序将自动调整恒温基座的温度来使LED的正向电压Vf达到目标结温值对应的结电压。在快速测定Vf 后,装置将自动回复使LED 通以工作电流的状态。当被测LED 在通过工作电流的情况下,其结温达到目标值(即达到目标结温值对应的Vf 值)且热平衡后,系统将自动启动光谱仪测量光、色参数同时读取其电参数。

上述测量方法最明显的优点是,在LED 实际的应用中,只要照明器具中LED工作在目标结温值附近,用这一方法参数有很好的模拟性,也使它的这些所测量的参数变得有意义,并且其光、色、电参数也具有很好的测量结果的重现性。

三、 LED 进入照明器具后结温的测量

1、LED 进入照明器具后结温控制和测量的必要性

LED 应用到照明器具中时,人们普遍希望具有几万小时的使用寿命,但是要测量采用LED 的照明器具的光衰减和寿命,按照美国DOE 的LM80 要求往往要化300 天以上的时间(6000h),这在很多工程招标和验收时是无法实施的。

结温作为衡量一个 LED 照明器具性能优劣的重要参数,是LED 照明器具在工程应用中可靠性测量的核心要素。如果能准确测量出灯具内LED 的PN 结结温和PN 结到散热器某一指定点的热阻这两个定量的指标,就不仅能衡量采用LED 的照明器具散热特性的优劣,还能定性地知道各种采用LED 的同类照明器具的大致使用寿命,另外还能得知LED 照明器具的光效和其他光参数的测量值是在什么结温条件下测得的,并且能得出照明器具中功率型LED 热沉上的某一点(参考温度点)与结温之间的函数关系,从而指导企业正确地标出热沉参考点的温度限值。

2、测量方法介绍

目前国内外对 LED 的PN 结的结温,只能进行单个LED 或者单个LED 摸块的结温和热阻的测量,还没有完整的对照明器具内LED 实际工作结温和热阻的测量方法,下面介绍一种完整的对照明器具内LED 实际工作结温和热阻的测量方法。

1)Vf-TJ 曲线标定

(1)将照明器具内LED 矩阵中间的某一串联LED 组中处于或者接近中间部位的一颗LED 作为被测LED,按图2 电路连接,在这一颗LED 的热沉(LED 自身所带的小散热器)上粘上一个热电偶。使灯具在25℃±2℃的环境下放置6~12 小时(视所测灯具的体积大小确定放置时间),然后给图2 中的被测LED 通上一支测量电流If,If 视被测LED 的功率大小可在2mA~50 mA 范围选定。通电测量时间为0.005S~2S,在此期间连续测量被测LED 的正向电压降Vf 可得出如图3 所示曲线。从该曲线上可得出该照明器具内被测LED 在通过某一恒定的测量电流时,在单位的测量时间Δt 内Vf 下降的数值ΔVf。该数值留作下述检测过程作为测量电流引起的Vf 变化的修正量。当测量时间小于3ms 并且测量电流比较小时,可以不引入修正量。

(2)把三个2 刀2 掷转换继电器调到测量位置,把LED 灯具放入一个可编程控制的专用加热箱内,该加热箱采用PID 编程方式,设定阶梯式加温方式对箱体内LED 灯具进行加热。阶梯式加温的控温曲线见图4。图4 中每一阶梯分为恒温时间段和升温时间段,这两个时间段可分别设定,设定范围为1 分钟~30 分钟中的任一值。根据LED 的热沉上粘上的热电偶反映的温度值,并且最终是以图2 电路测量被测LED 的正向电压降稳定时,说明灯具内LED 已达到某一设定点温度的热平衡。当每一个恒温时间段即将结束,开始测量被测LED 的正向电压降Vf,根据实际测量的时间△t,从图3 中得出修正是△Vf。把测得的Vf 值再加上△Vf,得出D1 在该温度下不受测量电流影响的Vf1',即Vf1'=Vf1+△Vf,把这一Vf1'和用热电隅测的温度T1 导入到设定的电脑数据库中,重复这一步骤,可以得出一组经修正的数值。把这一组经修正的数值自动导入数据库,就能生成照明器具内LED 的Vf-TJ 曲线。

2)照明器具中LED 热阻的测量

把上述在加热箱内已完成 Vf-TJ 关系曲线标定的照明器具取出冷却后,按如下步骤进行LED 热阻的测量。[!--empirenews.page--]

(1) 把该照明器具放入到GB 7000.1 标准附录D 规定的防风罩内,按正常的热试验位置布置好灯具,除了原来已经粘接在被测LED D1 上的热电隅外,还可根据检测委托方要求,在灯具内LED 的散热器的某些指定点甚至灯具外壳上某些点上粘接热电隅,(可以是单个或多个热电隅)。把每一热电隅连接到测温仪上,使照明器具在25℃±1℃条件下放置8 小时。

(2) 根据照明器具内LED 控制装置输出给D1 的实测工作电流值,设定测试恒流电源,按图2 电路给D1 通上一个实测工作电流,加热1 分钟~30 分钟,其间每隔1 分钟用原来标定的测量电流对D1 进行一次Vf 的测量,并按Vf-TJ 曲线查出对应的结温值,同时监视热电隅的测量温度,把测量的结温值和监视热电隅的测量温度值自动导入数据库。当测量的Vf 查得的结温与热电隅所测温度达到最大差值时,记录下此时的VfR 值和热电隅的测量的某一点温度值TB。把VfR 值通过Vf-TJ 曲线,得到该D1 即时的结温值TfR。按热阻RAB=(TfR-TB)/P 公式计算出D1 的PN 结到热沉或散热器甚至外壳的热阻值。

式中:

TFR——是D1 的PN 结结温与热电隅的测量值差达到最大值时D1 的正向电压降Vfa 值再根据Vf-TJ 曲线查得的该时刻LED 的结温。

TB——是当测量的Vf 查得的结温与热电隅所测温度达到最大差值时,热电隅测得的该时刻的参考点的测度值(该参考点可以是热沉,也可以是散热器上的某一点,亦可以是灯具外壳散热器上的某一点)。

P——被测LED 测热阻时的加热功率,是实测工作电流与结温测量过程被测LED 正向电压降的平均值的乘积。

3)照明器具中LED 结温的测量

把 LED 照明器具从专用加热箱内取出,本条试验可以和照明器具的热试验同时进行。把采用LED 的照明器具仍放在GB 7000.1 标准的附录D 规定的防风罩内,照明器具处于正常工作位置。把三个2 刀2 掷转换继电器调到工作位置,按GB7000.1 标准中12.4 热试验的要求进行热试验, 通过照明器具内的LED 控制装置把照明器具中的LED 矩阵点亮,此时LED 照明器具处于正常工作状态,观察LED 的热沉上粘上的热电偶反映的温度值,当温度值达到热平衡(每小时内温度变化小于1℃)时,把三个2 刀2 掷转换继电器调到测量位置,连续5 次,每次间隔数十毫秒测量出5 个被测LED 的正向电压值,通过电脑和专用函数计算软件,计算出被测LED 在断开工作电流瞬间的正向电压降,并根据上述正向电压降与结温的关系曲线查出LED 照明器具中被测LED 在连续工作至热平衡时的结温值,同时,也可以得到灯具连续工作至热平衡时热沉上参考点的温度值。

四、回顾和总结

对 LED 结温的测量和控制,是LED 进入照明领域不可缺少的重要步骤,它使LED 器件与LED 照明器具前后工序有机地结合起来。LED 照明灯具在正常工作时,其散热特性的好坏直接关系到光效,光衰和使用寿命,对应的指标是LED 工作时的PN 结结温及散热的热阻,如果这两个指标做好了,就说明该灯具在效率和使用寿命方面是有保证的。可以预见,这一方法的确立将是指导 LED 照明器具改进设计、制造环节,使LED 照明器具设计和生产技术走向更高层次的有力推手。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭