当前位置:首页 > 电源 > 数字电源
[导读]摘要:此处研究了基于谐波频谱的LCL滤波器设计。针对LCL滤波三相并网逆变器,给出采用空间矢量脉宽调制(SVPWM)方法控制的逆变桥桥臂电压输出谐波。依据EMI滤波器设计的方法,研究谐波频谱与谐振频率之间的关系,得出

摘要:此处研究了基于谐波频谱的LCL滤波器设计。针对LCL滤波三相并网逆变器,给出采用空间矢量脉宽调制(SVPWM)方法控制的逆变桥桥臂电压输出谐波。依据EMI滤波器设计的方法,研究谐波频谱与谐振频率之间的关系,得出LCL滤波器的谐振频率。在此基础上,设计出满足并网要求且总电感量最小的LCL滤波器。最后通过三相并网逆变器的实验装置给出了LCL滤波器设计方案的实验效果。

关键词:滤波器;谐波频谱;谐振频率

1 引言

地球上的石油及煤的储量有限,且化石能源的燃烧所排放的废气是造成环境污染、全球气候恶化的重要因素。核能发电的安全性及对环境的长期影响,目前还存在争议。世界各国都在努力寻求新的、“清洁”的发电方式,如风能、太阳能电能。在大功率风力并网逆变系统中,逆变器是实现电能馈送的一个重要环节。但是当功率较大时,为了减小损耗,功率器件的开关频率较低,导致进网电流具有较大谐波。为了使逆变器满足并网要求,且滤波器体积较小,通常采用LCL滤波器。

虽然LCL滤波器滤除高次谐波效果明显,但其设计比较复杂。文献介绍了LCL滤波器参数的设计步骤及限制条件,但过程较复杂,需要一定的实际经验,且需要多次尝试、反复验算才能得到合适的参数。文献给出了不同调制方法下,逆变器桥臂输出电压的谐波频谱。在此参考EMI滤波器的设计方法,在谐波频谱的基础上,得到谐振频率。然后根据系统功率确定LCL电容容值,在此基础上,计算出网侧电感值以及逆变桥侧电感值取值范围,根据取总电感量最小的原则,选择网侧电感以及逆变桥侧电感的感值。仿真和实验验证了滤波器设计方法的正确性。

2 LCL滤波三相并网逆变器的数学模型

三相并网逆变器的拓扑结构如图1所示。

图中L1为逆变器侧电感,L2为网侧电感,Cf为滤波电容,Rd是为避免LCL滤波器出现零阻抗谐振点而设置的阻尼电阻,ua,ub,uc分别为三相逆变桥输出电压,uga,ugb,ugc分别为三相电网的相电压,i2a,i2b,i2c为网侧相电流;C为直流母线电容。

假设三相电网电压对称,主电路开关器件为理想开关元件,忽略阻尼电阻对电路的影响,那么根据基尔霍夫定律可得逆变器的基于开关函数的数学模型为:

由上述公式可知,进网电流与逆变桥输出电压的传递函数为:

3 SVPWM控制的桥臂电压谐波分析

假设解析过程存在两个时间变量:x(t)=ωct+θc和y(t)=ω0t+θ0,其中载波角频率ωc=2π/Tc,Tc为载波周期,θc为载波波形的任意相位偏移角,基波(正弦)角频率ω0=2π/T0,ω0<ωc,T0为基波周期,θ0为基波的任意相位偏移角。

双变量控制波形傅里叶谐波分量的表达式为:

式中:m为载波的索引变量;n为基带的索引变量。

然后可得到双边沿自然采样SVPWM下三相逆变器相桥臂的谐波解析式为:

[!--empirenews.page--]

对1≤k≤10范围内的项求和,就可得到精确度可以接受的谐波幅值。

4 滤波器设计方法

这里采用插入电压增益来设计滤波器。插入电压增益定义为滤波器插入前后负载端的电压比。根据定义的插入增益,滤波器的设计可遵循以下步骤:①通过仿真或者测试得到未加入滤波器时变换器产生的干扰噪声频谱;②计算需要的衰减值曲线Ureq:将未加入滤波器时测得的干扰值U与标准Ulim进行比较,再加上6 dB的安全裕量,即Ureq=U-Ulim+6 dB;③计算滤波器的转折频率:用滤波器的电压插入增益去交截②中得到的需要衰减的曲线值,交截得到的频率即为滤波器的转折频率,如图2所示;④设计滤波器参数并测试这些参数是否满足标准要求。

5 谐振频率计算

考虑类似于EMI滤波器的设计方法。首先根据进网电流标准,得到标准限值频谱,然后根据不同的PWM控制方法,得到桥臂输出电压的频谱及所需要的衰减,计算出谐振频率。由数学模型可知进网电流与逆变桥侧输出电压的传递函数,类似于插入电压增益的计算,可得到LCL滤波器中的电压增益为:

在对数域中:桥臂输出电压谐波-进网电流谐波+20log(I额定/U额定)=20log[s3L1L2Cf+s(L1+L2)],LCL滤波器插入电压增益曲线如图3a所示。根据标准IEEE Std 929-2000,可绘出如图3b所示的进网电流谐波标准频谱曲线。当开关频率为5 kHz时,采用SVPWM的逆变器桥臂输出电压谐波频谱如图3c所示,图3d为系统中逆变桥输出电压各次谐波值减去进网电流各次谐波值。由于使用LCL滤波器,因此用20 dB/dec及60 dB/dec的直线去交截即可得出谐振频率。由图可知,此系统的谐振频率为1 300 Hz。

6 LCL滤波器中其他参数设计

由上述方法得到LCL滤波器的谐振频率,其计算公式如下:

因此在已知谐振频率的基础上,可先选取Cf的容值,然后选择L1及L2的值。

[!--empirenews.page--]

一般选取Cf吸收5%以下的无功功率,此处选取3%的无功容量,可得:

由此可得,在相同的谐振频率及相同的电容容值下,L1,L2与总电感值L1+L2的关系如图4所示。由图可见,L1+L2存在一个最小值。此时,L1=1.8 mH,L2=1.2 mH。

由于LCL滤波器存在谐振频率,可能会引起系统不稳定,因此考虑采用无源阻尼的方法,即在电容支路上串联一电阻来提高系统稳定性。但是电阻的加入不仅会降低LCL滤波器对高频谐波的衰减度,还会增大系统的损耗。因此,Rd的选取要综合考虑滤波器对高频谐波的衰减及损耗的影响。一般Rd取值为谐振频率处容抗的1/3,即Rd=(2πfresCf)/3。

7 实验验证

搭建35 kVA实验样机,实验参数为:输入电压为680V,输出三相电压相电压为230V,电流为54A,开关频率为5 kHz,使用TMS320F2812 DSP作为数字控制器。图5示出实验波形。

[!--empirenews.page--]

图5a示出满载时,电网电压ug与三相电流iga,igb,igc的波形。图5b示出满载时,进网电流单次谐波含量(SHD)与标准要求的单次谐波含量的对比图。图5c示出从空载突加至满载时进网电流的动态实验波形。由图5a,b可知,进网电流波形质量良好,谐波较小,满足标准要求。进网电流THD=2.5%,满足并网要求。由图5c可知,系统在突加负载时,可以很快地稳定,系统动态性能较好。

8 结论

此处建立了LCL滤波器的三相并网逆变器的数学模型,给出了采用空间矢量脉宽调制控制时逆变桥桥臂输出电压谐波,并参照EMI滤波器的设计方法,得出LCL滤波器的谐振频率。然后在总电感量最小的基础上,设计LCL滤波器参数值。最后通过实验验证了设计,实验结果表明滤波器设计合理,满足进网要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭