当前位置:首页 > 电源 > 数字电源
[导读]  QPSK是数字通信系统中一种常用的多进制调制方式。其调制的基本原理:对输入的二进制序列按每两位码元分为一组,用载波的四种相位表征它们。实际上QPSK信号是两路正交双

  QPSK是数字通信系统中一种常用的多进制调制方式。其调制的基本原理:对输入的二进制序列按每两位码元分为一组,用载波的四种相位表征它们。实际上QPSK信号是两路正交双边带信号。现在人们对通信的要求越来越高,高速率、大容量、以及多业务,这些对有限的频谱资源构成了大的挑战。因此,对相移键控的研究具有重要意义,因为信道条件的限制,大多数数字通信系统采用了对幅度波动不敏感的频移键控、相移键控和相应的派生调制方式。

  基于以上QPSK调制,本设计基于CPLD采用相位选择法来实现调制。

  1。 QPSK调制原理

  QPSK信号的正弦载波有4个可能的离散相位状态,每个载波相位携带2个二进制符号(00、01、10、11),其信号表示式为图1(a)是载波初始相位为0°的QPSK信号矢量图,如上图1(b)是初始相位为45°的QPSK信号的矢量图。

  

 

  图1

  QPSK调制有两种产生方法:相乘电路法和相位选择法。

  乘法电路调制:二进制码经过串并变换器分为两个半速率双极性码,两路信号经过低通滤波,分别与相互正交的两路载波信号相乘,然后两路信号相加得到QPSK信号。

  相位选择法:输入二进制数据经过串/并变换输出双比特码元,四相载波产生器输出四种不同相位的载波,逻辑选相电路根据串/并变换输入的双比特码元,每个时间间隔选择其中一种相位的载波作为输出,然后经带通滤波器滤除带外干扰信号,就得到QPSK调制信号。

  2. 本设计调制原理

  在设计中采用相位选择法来实现,QPSK信号有四种状态(00、01、10、11),将输入二进制序列每两位码元分为一组。

  方案中,用四种波形表示四种相位(图2)

  

 

  图2

  3. 系统模块设计

  电路总分为6部分:

  第一部分:电源电路,为整个电路提供5V的电压;

  第二部分:时钟信号电路,用来产生一个4MHz的时钟;

  第三部分:基带信号产生电路,产生五种序列码(全0码、全1码、0\1码、7位M序列和15位M序列);

  第四部分:调制电路,实现基带信号调制成抽样信号输出;

  第五部分:D/A转换电路,将调制模块输出的信号转换成模拟信号输出;

  第六部分:滤波电路,对D/A转换后的模拟信号经滤波完成模拟信号重建。[!--empirenews.page--]

  3.1 电源模块

  为电路提供5V电压的设计实现方案有多种,如采用USB提供5V电压也可以设计直流稳压电源。直流稳压电源的设计要先采用电源变压器经过整流电路然后滤波最后稳压这四部,设计实现起来相对复杂。设计中购买9V输出电源,将9V电源转化为5V电源。电路由一个7805芯片和2个电容组成,7805的1脚接电源电压输入,2脚接地,3脚经稳压后输出5V电压。C1、C2用来滤出纹波。

  3.2 时钟信号模块

  时钟电路模块由2个反相器构成反馈,配合1个电容和2个电阻使晶振起振,来产生一个4MHz的时钟。

  3.3 基带信号产生模块

  此模块的作用是产生五种基带信号(全0码、全1码、0\1码、7位M序列和15位M序列)。

  3.4 D/A模块

  调制模块调制出来的信号是数字基带信号,需要经过D/A转换为模拟信号,在设计中选用DAC0832实现D/A转换。

  DAC0832输出的是电流,但要求输出是电压,所以电路还必须经过一个运算放大器转换成电压。

  3.5 滤波模块

  滤波电路在设计中采用的是一个压控电压源低通滤波器。其截至频率为50KHz,增益为2,K=5.

  4. 调制信号仿真

  调制信号的仿真结果如下:

  当输入0/1码时,由于寄存器y为2,所以循环输出电平为005A7FBF.FFBF7F5A仿真波形如图3所示。

  

 

  图3

  当输入15位M序列码时,由于寄存器y值是变化的,所以输出电平不是循环的,仿真波形如图4所示。

  

 

  图4

  5. 结束语

  本次设计主要硬件模块有基带信号产生模块、调制模块、D/A转换模块和滤波模块,其中为简化设计系统设计供电模块采用了5V电池供电,基带信号产生模块和调制模块是设计中的关键点和难点,其基于CPLD设计,CPLD是一种整合性较高的逻辑逻辑元件。有高整合性的特点,故其有性能提升,可靠度增加,PCB面积减少和成本低等优点。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭