当前位置:首页 > 嵌入式 > 嵌入式电路图
[导读]给从机下发不同的指令,从机去执行不同的操作,这个就是判断一下功能码即可,和我们前边学的实用串口例程是类似的。多机通信,无非就是添加了一个设备地址判断而已,难度也

给从机下发不同的指令,从机去执行不同的操作,这个就是判断一下功能码即可,和我们前边学的实用串口例程是类似的。多机通信,无非就是添加了一个设备地址判断而已,难度也不大。我们找了一个 Modbus 调试精灵,通过设置设备地址,读写寄存器的地址以及数值数量等参数,可以直接替代串口调试助手,比较方便的下发多个字节的数据,如图18-7所示。我们先来就图中的设置和数据来对 Modbus 做进一步的分析,图中的数据来自于调试精灵与我们接下来要讲的例程之间的交互。

 

图18-7 Modbus 调试精灵

如图,我们的 USB 转 RS485 模块虚拟出的是 COM5,波特率9600,无校验位,数据位是8位,1位停止位,设备地址假设为1。

写寄存器的时候,如果我们要把01写到一个地址是0000的寄存器地址里,点一下“写入”,就会出现发送指令:01 06 00 00 00 01 48 0A。我们来分析一下这帧数据,其中01是设备地址,06是功能码,代表写寄存器这个功能,后边跟00 00表示的是要写入的寄存器的地址,00 01就是要写入的数据,48 0A就是 CRC 校验码,这是软件自动算出来的。而根据 Modbus 协议,当写寄存器的时候,从机成功完成该指令的操作后,会把主机发送的指令直接返回,我们的调试精灵会接收到这样一帧数据:01 06 00 00 00 01 48 0A。

假如我们现在要从寄存器地址0002开始读取寄存器,并且读取的数量是2个。点一下“读出”,就会出现发送指令:01 03 00 02 00 02 65 CB。其中01是设备地址,03是功能码,代表读寄存器这个功能,00 02就是读寄存器的起始地址,后一个00 02就是要读取2个寄存器的数值,65 CB就是 CRC 校验。而接收到的数据是:01 03 04 00 00 00 00 FA 33。其中01是设备地址,03是功能码,04代表的是后边读到的数据字节数是4个,00 00 00 00分别是地址00 02和00 03的寄存器内部的数据,而 FA 33 就是 CRC 校验了。

似乎越来越明朗了,所谓的 Modbus 通信协议,无非就是主机下发了不同的指令,从机根据指令的判断来执行不同的操作而已。由于我们的开发板没有 Modbus 功能码那么多相应的功能,我们在程序中定义了一个数组 regGroup[5],相当于5个寄存器,此外又定义了第6个寄存器,控制蜂鸣器,通过下发不同的指令我们改变寄存器组的数据或者改变蜂鸣器的开关状态。在 Modbus 协议里寄存器的地址和数值都是16位的,即2个字节,我们默认高字节是 0x00,低字节就是数组 regGroup 对应的值。其中地址 0x0000 到 0x0004 对应的就是 regGroup数组中的元素,我们写入的同时把数字又显示到 1602 液晶上,而 0x0005 这个地址,写入 0x00,蜂鸣器就不响,写入任何其它数值,蜂鸣器就报警。我们单片机的主要工作也就是解析串口接收的数据执行不同操作。 /*Lcd1602.c 文件程序源代码***/ (此处省略,可参考之前章节的代码) /****RS485.c 文件程序源代码*****/ (此处省略,可参考之前章节的代码) /****CRC16.c 文件程序源代码****/

/* CRC16 计算函数,ptr-数据指针,len-数据长度,返回值-计算出的 CRC16 数值 */

unsigned int GetCRC16(unsigned char *ptr, unsigned char len){

unsigned int index;

unsigned char crch = 0xFF; //高 CRC 字节

unsigned char crcl = 0xFF; //低 CRC 字节

unsigned char code TabH[] = { //CRC 高位字节值表

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40

} ;

unsigned char code TabL[] = { //CRC 低位字节值表

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,

0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,

0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,

0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,

0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,[!--empirenews.page--]

0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,

0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,

0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,

0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,

0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,

0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,

0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,

0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,

0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,

0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,

0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,

0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,

0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,

0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,

0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,

0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,

0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,

0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,

0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,

0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,

0x43, 0x83, 0x41, 0x81, 0x80, 0x40

} ;

while (len--){ //计算指定长度的 CRC

index = crch ^ *ptr++;

crch = crcl ^ TabH[index];

crcl = TabL[index];

}

return ((crch<<8) " crcl);

}

关于 CRC 校验的算法,如果不是专门学习校验算法本身,大家可以不去研究这个程序的细节,直接使用现成的函数即可。 /*****main.c 文件程序源代码**/

#include

sbit BUZZ = P1^6;

bit flagBuzzOn = 0; //蜂鸣器启动标志

unsigned char T0RH = 0; //T0 重载值的高字节

unsigned char T0RL = 0; //T0 重载值的低字节

unsigned char regGroup[5]; //Modbus 寄存器组,地址为 0x00~0x04

void ConfigTimer0(unsigned int ms);

extern void UartDriver();

extern void ConfigUART(unsigned int baud);

extern void UartRxMonitor(unsigned char ms);

extern void UartWrite(unsigned char *buf, unsigned char len);

extern unsigned int GetCRC16(unsigned char *ptr, unsigned char len);

extern void InitLcd1602();

extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str);

void main(){

EA = 1; //开总中断

ConfigTimer0(1); //配置 T0 定时 1ms

ConfigUART(9600); //配置波特率为 9600

InitLcd1602(); //初始化液晶

while (1){

UartDriver(); //调用串口驱动

}

}

/* 串口动作函数,根据接收到的命令帧执行响应的动作

buf-接收到的命令帧指针,len-命令帧长度 */

void UartAction(unsigned char *buf, unsigned char len){

unsigned char i;

unsigned char cnt;

unsigned char str[4];

unsigned int crc;

unsigned char crch, crcl;

/* 本例中的本机地址设定为 0x01,

如数据帧中的地址字节与本机地址不符,

则直接退出,即丢弃本帧数据不做任何处理 */

if (buf[0] != 0x01){

return;

}

//地址相符时,再对本帧数据进行校验

crc = GetCRC16(buf, len-2); //计算 CRC 校验值

crch = crc >> 8;

crcl = crc & 0xFF;

if ((buf[len-2]!=crch) || (buf[len-1]!=crcl)){

return; //如 CRC 校验不符时直接退出

}

//地址和校验字均相符后,解析功能码,执行相关操作

switch (buf[1]){

case 0x03: //读取一个或连续的寄存器

if ((buf[2]==0x00) && (buf[3]<=0x05)){ //只支持 0x0000~0x0005

if (buf[3] <= 0x04){

i = buf[3]; //提取寄存器地址

cnt = buf[5]; //提取待读取的寄存器数量

buf[2] = cnt*2; //读取数据的字节数,为寄存器数*2

len = 3; //帧前部已有地址、功能码、字节数共 3 个字节

while (cnt--){

buf[len++] = 0x00; //寄存器高字节补 0

buf[len++] = regGroup[i++]; //寄存器低字节

}

}else{ //地址 0x05 为蜂鸣器状态

buf[2] = 2; //读取数据的字节数

buf[3] = 0x00;

buf[4] = flagBuzzOn;

len = 5;

}

break;

}else{ //寄存器地址不被支持时,返回错误码

buf[1] = 0x83; //功能码最高位置 1

buf[2] = 0x02; //设置异常码为 02-无效地址

len = 3;

break;

}

case 0x06: //写入单个寄存器

if ((buf[2]==0x00) && (buf[3]<=0x05)){ //只支持 0x0000~0x0005

if (buf[3] <= 0x04){

i = buf[3]; //提取寄存器地址

regGroup[i] = buf[5]; //保存寄存器数据

cnt = regGroup[i] >> 4; //显示到液晶上

if (cnt >= 0xA){

str[0] = cnt - 0xA + ‘A‘;

}else{

str[0] = cnt + ‘0‘;

}

cnt = regGroup[i] & 0x0F;

if (cnt >= 0xA){

str[1] = cnt - 0xA + ‘A‘;

}else{

str[1] = cnt + ‘0‘;

}

[!--empirenews.page--]

str[2] = ‘‘;

LcdShowStr(i*3, 0, str);

}else{ //地址 0x05 为蜂鸣器状态

flagBuzzOn = (bit)buf[5]; //寄存器值转为蜂鸣器的开关

}

len -= 2; //长度-2 以重新计算 CRC 并返回原帧

break;

}else{ //寄存器地址不被支持时,返回错误码

buf[1] = 0x86; //功能码最高位置 1

buf[2] = 0x02; //设置异常码为 02-无效地址

len = 3;

break;

}

default: //其它不支持的功能码

buf[1] |= 0x80; //功能码最高位置 1

buf[2] = 0x01; //设置异常码为 01-无效功能

len = 3;

break;

}

crc = GetCRC16(buf, len); //计算返回帧的 CRC 校验值

buf[len++] = crc >> 8; //CRC 高字节

buf[len++] = crc & 0xFF; //CRC 低字节

UartWrite(buf, len); //发送返回帧

}

/* 配置并启动 T0,ms-T0 定时时间 */

void ConfigTimer0(unsigned int ms){

unsigned long tmp; //临时变量

tmp = 11059200 / 12; //定时器计数频率

tmp = (tmp * ms) / 1000; //计算所需的计数值

tmp = 65536 - tmp; //计算定时器重载值

tmp = tmp + 33; //补偿中断响应延时造成的误差

T0RH = (unsigned char)(tmp>>8); //定时器重载值拆分为高低字节

T0RL = (unsigned char)tmp;

TMOD &= 0xF0; //清零 T0 的控制位

TMOD |= 0x01; //配置 T0 为模式 1

TH0 = T0RH; //加载 T0 重载值

TL0 = T0RL;

ET0 = 1; //使能 T0 中断

TR0 = 1; //启动 T0

}

/* T0 中断服务函数,执行串口接收监控和蜂鸣器驱动 */

void InterruptTimer0() interrupt 1{

TH0 = T0RH; //重新加载重载值

TL0 = T0RL;

if (flagBuzzOn){ //执行蜂鸣器鸣叫或关闭

BUZZ = ~BUZZ;

}else{

BUZZ = 1;

}

UartRxMonitor(1); //串口接收监控

}

大家可以看到负责解析协议的 UartAction 函数很长,因为协议解析本来就是一件很繁琐的事情。我们的例程仅解析执行了两个功能命令,就已经有近百行程序了,如果你需要解析更多的功能命令的话,那么建议把每个功能都做一个函数,然后在相应的 case 分支里调用即可,这样就不会使单个函数过于庞大而难以维护。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭