当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]引 言随着汽车电子的发展,传统的点对点的通信已经不能满足现代汽车通信的要求。汽车电子网络技术正成为实现汽车控制系统的首选,它使汽车电子技术进入一个全新的时代。20世

引 言

随着汽车电子的发展,传统的点对点的通信已经不能满足现代汽车通信的要求。汽车电子网络技术正成为实现汽车控制系统的首选,它使汽车电子技术进入一个全新的时代。

20世纪 90年代,美国汽车工程师协会SAE(Society of AutomoTIve Engineers)将汽车数据传输网分成了A、B、C三类:A类网络主要面向传感器/ 执行器的低速网络,数据传输位速率一般小于10 kb/s,目前A类网的首选标准为LIN(LocalInterconnect Network)协议;B类网络主要面向独立模块间数据共享的中速网络,数据传输位速率在10~125 kb/s,目前B类网络主要采用低速容错CAN标准ISO11898-3;C类网络则主要面向高速、实时闭环控制的多路传输网,数据传输位速率在 125~1 Mb/s之间,欧洲的汽车制造商主要采用高速CAN标准ISO11898-2来实现该类网络。下面简要介绍一下CAN协议和LIN协议。

1986 年2月,德国的Bosch公司在SAE大会上提出了CAN串行总线。时至今日,CAN已经形成国际标准,凭借自身的优点,不仅在汽车领域,而且在机械、数控机床及传感器等领域都得到广泛应用。CAN总线的主要特点有:多主机的工作方式;最大传输速率可达1 Mb/s(通信距离最长40 m),直接通信距离可达10 km(速率小于5 kb/s);采用短帧结构,传输时间短;良好的检错能力;非破坏总线仲裁技术;较高的性价比。

LIN 是1998年由BMW等五家汽车制造商、一家软件工具制造商以及一家半导体厂商联合提出的一个协议。LIN通信是基于SCI(UART)数据格式,采用单主/多从模式以及低成本的单线连接方式,最高传输速率可达20kb/s。 LIN的从节点不用晶振或陶瓷振荡器就能实现自同步。出于以上技术特点, LIN总线实现成本较低,且完全能够满足A类网络的通信需求。

在实际的汽车电子网络中,A、B、C三类网络并不是完全独立的。为了完成车辆的控制及信息共享,不同网络间必须进行相应的数据交换。由于是三种不同的网络,它们之间的通信是不能直接进行的,而必须作相应的协议转换及数据处理后才能实现,这些工作是由网关来实现的。本文提出了一种网关的设计方案,用以实现高速CAN、低速CAN及LIN三种总线网络之间的通信。

1 网关总体结构

本文所讨论的网关其主要任务是解决车载网络中A、B、C三类网络的相互通信的问题,实现数据的存储转发及高、低速CAN协议之间或低速CAN与 LIN协议之间的协议转换,以便在不同网络之间实现数据通信。网关主要分为4个部分:实现数据存储转发和协议转换的主控制器,用于与高速CAN网络连接的高速CAN 节点模块,与低速CAN网络连接的低速CAN节点模块以及与LIN网络连接的LIN节点模块。网关系统的电路框图如图1所示。

 

网关中三个节点电路分别与各自的网络相连,且实现各自对应的网络与主控制器之间的数据交换。这个数据交换过程是双向的,既包括从网络上接收数据并将数据存到主控制器中,又包括从主控制器相应的缓存器中读取数据并将其发送到自己对应的网络中。主控制器主要负责数据的存储及协议的转换,即将各个节点接收来的数据根据其目的网络的不同,分别存入不同的缓冲区,并且根据目的网络的不同,将数据转化为能够在目的网络上传送的数据格式。

2 网关电路设计

如上所述,网关的硬件电路主要由主控制器、高速CAN节点模块、低速CAN节点模块、LIN节点模块4部分组成。为了满足网关的正常通信要求,必须考虑主控制器的数据处理能力。另外,由于网关的工作环境为电磁干扰非常严重的汽车内部,故还须考虑网关的抗噪声干扰性能。网关的硬件设计简图如图2所示, AT91SAM7A3为网关的主控制芯片,TJA1020为LIN总线收发器,CTM1054为低速CAN收发器,CTM1050为高速CAN收发器。

 

2.1 主控制器的选择

实现数据的高效率、高质量的存储转发是网关的重要目标,而主控制器是网关的核心器件,它的性能好坏直接决定了网关的效率高低。主控器对接收到的数据进行缓存,因此主控制器需要有较高的存储容量。主控器还要对它所接收与转发的数据进行协议转换等数据处理,因此还要有较强的运算能力。

本设计选用了Atml公司的AT91SAM7A3作为网关的核心控制器。这是一颗基于ARM7TDMI内核的32位RISC处理器,具有执行速度快、效率高的特点,能够满足网关的数据处理要求。该芯片内置32 KB的SRAM和256 KB的高速Flash存储器,存储能力强,能够满足网关对数据存储的要求。另外,该芯片内部集成有2个功能强大的CAN2.OB的控制器,可以处理所有类型的帧结构(数据帧、远程帧、错误帧及过载帧),每个控制器有16个独立的缓存区(mailbox),十分有利于实现网关高速、大容量的数据处理。集成的 CAN控制器还能够减少器件数目和PCB布线数量,有利于提高系统的抗干扰性能。

2. 2 CAN节点设计

常用的 CAN节点电路如图3所示,它主要由MCU、CAN控制器及CAN收发器组成。为了增强电路的抗干扰性,还需要在控制器与收发器之间增加一个隔离电路。

 

本网关中的CAN节点共有2个:高速CAN节点和低速CAN 节点。由于在汽车中电磁干扰现象非常严重,仅靠单个的CAN收发器难以满足通信品质的要求,需要加上适当的隔离电路以提高电路的抗干扰性。

2 个节点的MCU的功能由主控制芯片AT91SAM7A3实现,且AT91SAM7A3中集成了两个高性能的CAN控制器,可以分别作为高低速CAN节点的控制器。

常用的隔离电路采用高速光耦6N137实现CAN节点之间的信号隔离,并且采用电源隔离模块实现高速光耦的两个电源的隔离。但是这种设计无疑增加了PCB的走线,使电路的没计变得复杂,同时隔离电路的隔离效果也受到影响。

本设计采用广州致远电子有限公司生产的 CTM系列的CTM1050和CTM1054,分别作为高低速CAN收发器。CTM系列的CAN收发器集成了CAN 收发器以及必需的隔离,即在一块芯片上实现了隔离电路和CAN收发器的功能。这样就不必单独设计隔离电路,提高了集成度,使得抗干扰性得到增强。[!--empirenews.page--]

高速CAN收发器CTM1050,最高速率可达1 Mb/s,完全符合ISO11898-2标准的高速CAN通信,用它作为高速CAN网络接口的收发器(电路连接方法见图2)。容错CAN收发器 CTM1054,最高通信速率可达125 kb/s,完全符合ISO11898-3标准,用它作为低速CAN网络接口的收发器(电路连接方法见图2)。需要注意的是,在CTM1054的连接中,有 2个电阻R1和R2的阻值要根据低速CAN网络中节点的个数来确定。具体值的算法见CTM1054使用手册。

2.3 LIN接口设计

LIN 总线是一主多从的总线连接方式,节点有主从之分。在本设计中,将LIN节点设计为主节点。LIN是一个基于单线串行的通信协议,对于硬件的要求比较简单。通常一个有SCI/UART接口的单片机和一个LIN收发器就可组成LIN节点。本设计利用AT91SAM7A3的UART口和LIN收发器 TJA1020组成一个LIN主节点。

TJA1020使用的波特率可从2.4~20 kb/s,有较好的保护功能:总线终端和电池引脚可防止汽车环境下的瞬变、总线终端对电池和地的短路保护以及过热保护等,可以作为汽车通信中的LIN通信接口(具体电路连接见图2)。

3 网关软件设计

网关的软件系统主要包括主监控程序、数据的发送、数据的接收、数据的处理 (包括协议转换和缓冲区内数据的读写处理)等几部分。

3.1 主监控程序

如图4所示,在主控制器AT91SAM7A3中划出4块缓冲区BUF1~BUF4,每一块缓冲区中的数据都有明确而且唯一的来源和目的地。主监控程序主要通过循环依次查询BUF1~BUF4中的存储情况,来决定是否发送数据以及将数据发送给谁。

 

当高速CAN网络上有数据需要接收的时候,通过高速CAN模块接收数据,对接收到的数据进行处理后,将其存到缓冲区BUF1中,再由低速CAN模块将其发送到低速CAN网络上;当LIN网络上有数据需要接收时,通过LIN总线模块接收数据,对接收到的数据进行数据格式转换(LIN格式的报文帧转换为 CAN 格式的报文帧),再将其存入到缓冲区BUF4中,并由低速CAN模块将其发送到低速CAN网络上;当低速CAN网络上有数据需要接收时,先接收数据,然后判断数据是发送到高速CAN总线,还是发送到LIN总线,根据判断结果对数据进行处理,存入相应的缓冲区(如数据是发往高速CAN总线,则存入BUF2,否则存入BUF3)。

3.2 数据的发送

数据的发送由发送子程序完成,网关中主要有3个发送子程序,分别对应两路CAN 控制器以及一路 LIN发送器。高速CAN的发送子程序负责发送BUF1中的数据,LIN的发送子程序负责发送BUF3中的数据,低速CAN的发送子程序负责发送BUF2 和BUF4中的数据。数据的发送采用查询总线状态的发送方式:查询总线的忙闲情况,如果总线忙,则退出发送子程序,进行其他的工作;如果总线空闲,则发送数据。发送完1帧数据后,再检查与之相应的缓冲区的状态。如果为空,则退出发送子程序;如果非空,则再检查总线的忙闲状态。如果忙,则退出发送子程序;如果空闲,则发送数据。然后再开始新一轮的数据查询发送过程。图5为高速CAN向低速CAN发送的流程,其他的发送子程序过程与此类似。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭