基于Actel反熔丝FPGA的高速DDR接口设计
扫描二维码
随时随地手机看文章
文章提出一种基于Actel 公司RTAX – S 系列耐辐射反熔丝FPGA 实现的高速DDR 输出电路的设计方法。通过Modelsim 对其进行了布局布线仿真分析和验证,验证了设计方法合理、可行,有助于反熔丝FPGA 后续星载应用。
0
随着航天技术的发展,FPGA 等大规模逻辑器件越来越成为不可缺的角色; 同时处理数据量的增大、以及各类型接口电路的交叉使用,使得合理、可靠的高速接口设计成为衡量设计优劣的关键。而由于空间环境的特殊性,导致近年来在轨卫星产品中单粒子翻转( SEU) 频发,使得设计人员必须考虑将以SRAM 为基础的FPGA 设计移植到更为可靠的ASIC或反熔丝FPGA.
DDR( Double DataRate) 是双倍速率读写技术的意思。传统的数据处理方式在1 个时钟周期内只传输1 次数据,是在时钟的上升期进行数据传输; 而DDR 内存则是1 个时钟周期内传输2 次数据,能够在时钟的上升期和下降期各传输1 次数据,因此称为双倍速率读写技术。采用DDR 技术可以在相同的总线频率下达到更高的数据传输率。
文章根据实际的背景应用提出一种基于Actel公司RTAX-S 系列耐辐射反熔丝FPGA 芯片RTAX250S 的高速DDR 接口设计方法,并通过Actel公司IDE V9. 0 编译软件和Modelsim 6. 5d 仿真软件进行了仿真验证。该方法已用在某星载GMSK 调制器上,获得了良好的效果。
1 DDR 高速接口设计
1. 1 RTAX – S 系列反熔丝FPGA 的特点
对于卫星应用,设计人员在选择可选的技术时一向十分为难。在可编程器件领域,其中就包括了专用集成电路( ASIC) 、以SRAM 为基础的现场可编程门阵列FPGA 和以反熔丝为基础的FPGA.由于没有一种技术是万能的,卫星设计人员与所有设计人员一样面对同样的挑战,需要针对特定的应用权衡取舍各种特性以找出最佳方案。
以往的设计中,以SRAM 为基础的FPGA ( 以Xilinx 产品为代表) 有着更多的应用,其优势在于拥有高逻辑密度和高灵活性,而作为航天应用,其致命的缺点是所有SRAM 都易受高强度宇宙辐射所影响,来自宇宙射线中的重离子很容易在SRAM 单元中或附近沉积足够的电荷导致单一数据位出错即单粒子翻转( SEU) ,而且由于SRAM 型FPGA 在SRAM开关中存储其逻辑配置,因此很容易出现配置扰乱导致电路的布局和功能受到破坏,这些错误非常难以检测和纠正,并且几乎不可能预防,因为配置开关在SRAM FPGA 的整个SRAM 数据位中超过90% ,辐射诱发的配置扰乱可导致系统失效。
对于卫星设备,ASIC 是具有最高密度最小重量和最低功耗的解决方案,然而却缺乏FPGA 所提供的灵活性。而且当把设计工具成本、校验时间和非经常性工程费用( NRE) 一并考虑之后,ASIC 也是成本较高的解决方案。