如何为数字温度传感器选择系统接口
扫描二维码
随时随地手机看文章
有助于获得精确的热管理加上免校准特性,将确保数字温度传感器继续受到人们的欢迎。为满足需多个主器件共存的高可靠性和系统冗余要求,以及对于要求轻松添加新温度传感器的应用而言,i2c总线或smbus将继续保持其作为温度传感器系统接口主要选择的地位。 图1:数字温度传感器简化框图。热敏电阻、热电偶、模拟硅温度传感器和镍/铂电阻式温度检测器(rtd),需要进行校准以达到所需的温度精度。作为混合信号器件的数字温度传感器则不需要进行校准,它们具有集成数字逻辑,工作温度范围为-55℃到50℃,采用绝对温度比例(ptat)电路,通过检测二极管的基极-发射极电压(vbe)的变化来测量本地/远程温度。它具有简单的集成硬件来保存温度值并对温度设定点、器件工作模式、睡眠模式以及快/慢转换速率进行编程设定。数据通过ic间总线(i2c总线)、系统管理总线(smbus)或串行外围接口(spi)来通信。实际上,每个器件在生产时均会进行调整,温度检测精度达到±0.5℃以内或者更高,性价比和可靠性均很高。这些优点使得数字温度传感器在几乎任何可以想象到的应用中都受到欢迎,包括pc、通信设备、手持设备和工业控制设备等。 具体来说,数字温度传感器的主要构成包括一个双电流源、一个δ-σ a/d转换器、数字逻辑和一个通向数字器件(如与一个微处理器或微控制器连接)的串行接口(如i2c总线、smbus或spi)。数字温度传感器有两种:本地或远程温度传感器,它们均采用某种方法强制两个成比例的电流通过一个连接成二极管形式的npn或pnp晶体管,均用于测量所导致的vbe变化,使用δ-σa/d转换器对电压采样并将数值转换成数字格式。强制电流一般采用约10:1的比例。通过强制施加比例电流和测量两个vbe的差值,可消除二极管上is这一与工艺相关参数的一阶效应。 图2:spi 典型读/写周期。(点击放大该图)每个温度传感器在生产过程中均会进行调整,以便与要使用的二极管的理想参数匹配。远程二极管的特性取自2n3904/6。由于本地温度传感器在硅衬底上只是一个简单的npn或pnp结构,远程温度传感器几乎总是集成一个本地温度传感器。因此,远程传感器的作用几乎总是像两个传感器一样。本地温度传感器在同一封装集成了一个热二极管。对于本地传感器,根据封装和位于ic衬底上的本地二极管,热时间常数(即达到最终温度的63.2%所需的时间)为几分钟。总线负载过重或转换过快会造成器件自加热并影响温度精度。 温度数据变为可用所需的时间称为转换速率。该速率由器件内部振荡器和a/d分辨率决定,一般低于100hz或长于10ms。转换速率越快,温度数据可检索的速度就越快,同时温度传感器消耗的功率也就越大。由于存在自加热效应,转换速率通常较低。图1显示了一个远程温度传感器和/或本地温度传感器的简化框图。 i2c总线或smbus温度传感器的优点 最流行的数字温度传感器是那些带有串行总线接口的传感器。温度传感器总线的选择很大程度上取决于所选微处理器或控制器上有哪些可用的接口。控制器的选择取决于工程师对其拥有的经验多少。对于需要经常进行数据流传输的系统数据,spi是首选,因为它拥有较快的时钟速率,速率可从几兆赫兹到几十兆赫兹。然而,对于系统管理活动,如读取温度传感器的读数和查询多个从器件的状态,或者需要多个主器件共存于同一系统总线上(系统冗余常会要求这一点),或者面向低功耗应用,这时i2c 或 smbus将是首选接口。下面几部分将介绍每种串行总线及其优缺点。 图3:(a)i2c总线/smbus系统接口;(b)spi 系统接口。1. spi spi 是一种四线制串行总线接口,为主/从结构,四条导线分别为串行时钟(sclk)、主出从入(mosi)、主入从出(miso)和从选(ss)信号。主器件为时钟提供者,可发起读从器件或写从器件操作。这时主器件将与一个从器件进行对话。当总线上存在多个从器件时,要发起一次传输,主器件将把该从器件选择线拉低,然后分别通过 mosi 和 miso 线启动数据发送或接收。 spi 时钟速度很快,