当前位置:首页 > 嵌入式 > 嵌入式硬件

其他算法

1. CLARA(Cluster Larger Application)是基于k-中心点类型的算法,能处理更大的数据集合。CLARA先抽取数据集合的多个样本,然后用PAM方法在抽样的样本中寻找最佳的k中心点,返回最好的聚类结果作为输出。但不然k-中心点准确,CLARA准确度取决于抽样算法。

2. CLArANS(Cluster Larger Application baed upon RANdomized search,随机搜索聚类算法),另一种k-中心点的算法,与CLARA类似采用抽样方法,但也有不同:CLArANS在搜索的每一步都带一定随机性地选取一个样本。

层次聚类方法

层次聚类分为两种:

(1) 凝聚的层次聚类:自底向上的策略,首先将每个对象作为一个簇,然后合并这些原子簇为更大的簇,直到所有的对象都在同一个簇中,或者满足终止条件。

(2) 分类的层次聚类:自顶向下的策略。

AGNES算法

AGNES(Agglomerative Nesting) 是凝聚的层次聚类算法,如果簇C1中的一个对象和簇C2中的一个对象之间的距离是所有属于不同簇的对象间欧式距离中最小的,C1和C2可能被合并。这是一种单连接方法,其每个簇可以被簇中的所有对象代表,两个簇之间的相似度由这两个簇中距离最近的数据点对的相似度来确定。

算法描述:

输入:包含n个对象的数据库,终止条件簇的数目k

输出:k个簇

(1) 将每个对象当成一个初始簇

(2) Repeat

(3) 根据两个簇中最近的数据点找到最近的两个簇

(4) 合并两个簇,生成新的簇的集合

(5) Until达到定义的簇的数目

算法性能:

(1) 简单,但遇到合并点选择困难的情况。

(2) 一旦一组对象被合并,不能撤销

(3) 算法的复杂度为O(n的平方),不适合大数据集计算DIANA算法

DIANA(Divisive Analysis)算法属于分裂的层次聚类,首先将所有的对象初始化到一个簇中,然后根据一些原则(比如最邻近的最大欧式距离),将该簇分类。直到到达用户指定的簇数目或者两个簇之间的距离超过了某个阈值。

DIANA用到如下两个定义:

(1) 簇的直径:在一个簇中的任意两个数据点都有一个欧氏距离,这些距离中的最大值是簇的直径

(2) 平均相异度(平均距离):

算法描述:

输入:包含n个对象的数据库,终止条件簇的数目k

输出:k个簇,达到终止条件规定簇数目

(1) 将所有对象整个当成一个初始簇

(2) For ( i=1;i!=k;i++) Do Begin

(3) 在所有簇中挑选出具有最大直径的簇;

(4) 找出所挑出簇里与其他点平均相异度最大的一个点放入splinter group,剩余的放入old party中。

(5) Repeat

(6) 在old party里找出到splinter group中点的最近距离不大于old party中点的最近距离的点,并将该点加入splinter group

(7) Until 没有新的old party的点被分配给splinter group;

(8) Splinter group 和old party为被选中的簇分裂成的两个簇,与其他簇一起组成新的簇集合

(9) END

算法性能:

缺点是已做的分裂操作不能撤销,类之间不能交换对象。如果在某步没有选择好分裂点,可能会导致低质量的聚类结果。大数据集不太适用。

其他算法

层次聚类方法比较简单,但是经常遇到的一个问题,就是在合并或分裂点选择困难的问题。一个有希望的改进方向是将层级聚类和其他聚类技术进行集成,形成多阶段聚类。

(1) BIRCH算法

BIRCH(利用层次方法的平衡迭代规约和聚类)是一个总和的层次聚类方法,

(2) CURE算法

密度聚类方法

基本思想:只要一个区域的点的密度大于某个阈值,就把它加到预置最近的聚类中区。密度聚类可以发现任意形状的聚类,且对噪声数据不敏感。但是计算复杂度大,且对数据维数的伸缩性较差。需要扫描整个数据库,每个数据对象都可能引起一次查询,因此当数据量大时会造成频繁的I/O操作。

DBSCAN算法

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域户分成簇,并且可以在有“噪声”的空间数据库中发现任意形状的聚类。

基本定义:

(1) 对象的 -临域:给定对象的半径 内的区域。

(2) 核心对象:如果一个对象的 -临域至关于 少包含最小数目MinPts个对象,则成该对象为核心对象。

(3) 直接密度可达:给定一个对象集合D,如果p是在q的 -临域内,而且q是一个核心对象,我们就说对象p从对象q出发是直接密度可达的。

(4) 密度可达:如果存在一个对象链p1, p2,…,pn, p1=q, pn=p,对于任意的pi属于D,pi+1是从pi关于 和MinPts直接密度可达的,则对象p是从对象q关于 和MinPts密度可达的。

(5) 密度相连的:如果对象集合D中存在一个对象o,使得对象p和q是从o关于 和MinPits密度可达的,那么对象p和q是关于 和MinPts可达的。

(6) 噪声:一个基于密度的簇是基于密度可达性的最大的密度相连对象的集合。不包含在任何簇中的对象被认为是“噪声”。

算法描述:

输入:包含n个对象的数据库,半径 ,最少数目MinPts

输出:所有生成的簇,到达密度要求

(1) repeat

(2) 从数据库中抽取出一个未处理过的点

(3) If 抽出的点是核心点 then 找出所有从改密度可达的对象,形成一个簇

(4) Else 抽出的点是边缘点(非核心对象),跳出本次循环,寻找下一个点

(5) Until 所有点都被处理

算法性能:

可以发现任意形状的簇,但是该算法对用户定义的参数是敏感的,为了解决这个问题,OPTICS(ordering points to identify the clustering structure)被提出,通过引入核心距离和可达距离,使得聚类算法对输入的参数不敏感。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭