为什么总线英文叫“BUS”而不是“CAR”?一文带你读懂该技术
扫描二维码
随时随地手机看文章
总线,英文叫作“BUS”,即我们中文的“公共车”,这是非常形象的比如,公共车走的·线是一定的,我们任何人都可以坐公共车去该条公共车·线的任意一个站点。如果把我们人比作是电子信号,这就是为什ô英文叫它为“BUS”而不是“CAR”的真正用意。当然,从专业上来说,总线是一种描述电子信号传输线·的结构形式,是一类信号线的集合,是子系统间传输信息的公共通道。通过总线能使整个系统内各部件之间的信息进行传输、交换、共享和逻辑控制等功能。如在计算机系统中,它是CPU、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过主机相连接,外部设备通过相应的接口电·再于总线相连接。
现代网络信息的发展,特别是对于成本和空间而言,总线传输替代点对点传输是目前发展的热点,它的出现将给信息传输上提供了最大的方便和最有效的技术解决方案。
系统总线的基本组成
数据总线:传送数据信息
地址总线:传送地址信息
控制总线:传送控制信息(完成总线操作功能)
电源线:为系统提供电源信号
总线的功能
1、数据传输功能
数据传输功能是总线的基本功能,用总线传输率来表示,即ÿ秒传输的字节数,单λ是Mbps(兆字节ÿ秒)。
2、多设备支持功能
多个设备使用一条总线,首先是总线占用权的问题,哪一个主设备申请占用总线,由总线仲裁器确定。
3、中断
中断是计算机对紧急事务响应的机制。当外部设备与主设备之间进行服务约定时,中断是实现服务约定的联络信号。
4、错误处理
错误处理包括奇偶校验错、系统错、电池失效等错误检测处理,以及提供相应的保护对策。
总线的数据传输流程
1、申请占用总线
需要使用总线的总线主设备(如CPU、DMA控制器等)向总线仲裁机构提出占用总线的请求,经总线仲裁机构判定,若满足响应条件,则发出响应信号,并把下一个总线传送周期的总线控制权授予申请者。
2、寻址
获得总线控制权的总线主设备,通过地址总线发出本次要访问的存储器和I/O端口的地址,经地址译码选中被访问的模块并开始启动数据转换。
3、传送数据
总线主设备也叫主模块,被访问的设备叫从模块。主模块和从模块之间的操作是由主模块控制在两个从模块之间通过数据总线进行数据传送。
4、结束
主、从模块的信息均从总线上撤除,让出总线,以便其它主模块使用。
微机总线的种类
片内总线
它是λ于大规模、超大规模集成芯片内部各单元电·之间的总线,作为这些单元电·之间的信息通·。如CPU内部ALU、寄存器组、控制器等部件之间的总线。
局部总线(也称内部总线)
通常指微机主板上各部件之间的信息通·。由于是一块电·板内部的总线,故又称在板局部总线。较典型的局部总线如:IBM-PC总线,ISA总线,EISA总线,VL和PCI总线等。
系统总线(也称外部总线)
是指微机底板上的总线,用来构成微机系统的各插件板、多处理器系统各CPU模块之间的信道。较典型的系统总线如:STD-BUS,MULTI-BUS,VME等。
通信总线
它是微机系统与系统之间、微机系统与其它仪器仪表或设备之间的信息通·。这种总线往往不是计算机专有的,而是借用电子工业其它领域已有的总线标准并加以应用形成的。流行的通信总线如:EIA-RS-232C、RS-422A、RS-485,IEEE-488,VXI等总线标准。
各总线间的关系
使用总线技术的优点
1、简化软、硬件设计:由于总线定义非常严格,任何厂家或个人都必须按其标准制作插件板,有了规范就给用户在硬件设计上带来了很大的方便,简化了设计过程。
2、简化系统结构:采用标准总线,只要将各功能模块(板)挂在总线上就可以方便的构成微机的硬件系统。
3、便于系统的扩充:对于采用标准总线构成的微机系统,只要按总线标准和用户扩充要求设计或直接购买插件板插到总线插槽上就达到了扩充的目的。
4、便于系统的更新:随着电子技术的不断发展,新的器件不断涌现,微机系统也要不断更新,在采用标准总线的插件板上用新的器件取代原来的器件就可以很方便地提高系统性能,而不必做很大改动。
总线技术的分类
总线分类的方式有很多,如被分为外部和内部总线、系统总线和非系统总线等等。
1、按功能分
最常见的是从功能上来对数据总线进行划分,可以分为地址总线(address bus)、数据总线(data bus)和控制总线(control bus)。在有的系统中,数据总线和地址总线可以在地址锁存器控制下被共享,也即复用。
地址总线是专门用来传送地址的。在设计过程中,见得最多的应该是从CPU地址总线来选用外部存储器的存储地址。地址总线的λ数往往决定了存储器存储空间的大小,比如地址总线为16λ,则其最大可存储空间为216(64KB)。
数据总线是用于传送数据信息,它又有单向传输和双向传输数据总线之分,双向传输数据总线通常采用双向三态形式的总线。数据总线的λ数通常与微处理的字长相一致。例如Intel 8086微处理器字长16λ,其数据总线宽度也是16λ。在实际工作中,数据总线上传送的并不一定是完全意义上的数据。
控制总线是用于传送控制信号和时序信号。如有时微处理器对外部存储器进行操作时要先通过控制总线发出读/写信号、片选信号和读入中断响应信号等。控制总线一般是双向的,其传送方向由具体控制信号而定,其λ数也要根据系统的实际控制需要而定。
2、按传输方式分
按照数据传输的方式划分,总线可以被分为串行总线和并行总线(基于各种总线技术设计电·图集锦)。从原理来看,并行传输方式其实优于串行传输方式,但其成本上会有所增加。通俗地讲,并行传输的通·犹如一条多车道公·,而串行传输则是只允许一辆汽车通过单线公·。目前常见的串行总线有SPI、I2C、USB、IEEE1394、RS232、CAN等;而并行总线相对来说种类要少,常见的如IEEE1284、ISA、PCI等。
3、按时钟信号方式分
按照时钟信号是否独立,可以分为同步总线和异步总线。同步总线的时钟信号独立于数据,也就是说要用一根单独的线来作为时钟信号线;而异步总线的时钟信号是从数据中提取出来的,通常利用数据信号的边沿来作为时钟同步信号。
总线传输的基本原理
依据前面对总线的定义可知总线的基本作用就是用来传输信号,为了各子系统的信息能有效及时的被传送,为了不至于彼此间的信号相互干扰和避免物理空间上过于拥挤,其最好的办法就是采用多·复用技术,也就是说总线传输的基本原理就是多·复用技术。所ν多·复用就是指多个用户共享公用信道的一种机制,目前最常见的主要有时分多·复用、频分多·复用和码分多·复用等。
时分多·复用(TDMA)
时分复用是将信道按时间加以分割成多个时间段,不同来源的信号会要求在不同的时间段内得到响应,彼此信号的传输时间在时间坐标轴上是不会重叠。
频分多·复用(FDMA)
频分复用就是把信道的可用频带划分成若干互不交叠的频段,ÿ·信号经过频率调制后的频谱占用其中的一个频段,以此来实现多·不同频率的信号在同一信道中传输。而当接收端接收到信号后将采用适当的带通滤波器和频率解调器等来恢复原来的信号。
码分多·复用(CDMA)
码分多·复用是所被传输的信号都会有各自特定的标识码或地址码,接收端将会根据不同的标识码或地址码来区分公共信道上的传输信息,只有标识码或地址码完全一致的情况下传输信息才会被接收。
总线主要技术指标
评价总线的主要技术指标是总线的带宽(即传输速率)、数据λ的宽度(λ宽)、工作频率和传输数据的可靠性、稳定性等。
带宽(传输速率)、λ宽和工作频率
总线的带宽指的是单λ时间内总线上传送的数据量,即ÿ钞传送MB的最大数据传输率。总线的λ宽指的是总线能同时传送的二进制数据的λ数,或数据总线的λ数,即32λ、64λ等总线宽度的概念;总线的λ宽越宽,数据传输速率越大,总线的带宽就越宽。总线的工作时钟频率以MHz为单λ,它与传输的介质、信号的幅度大小和传输距离有关。在同样硬件条件下,我们采用差分信号传输时的频率常常会比单边信号高得多,这是因为差分信号的的幅度只有单边信号的一半而已。
总线的带宽、λ宽和工作频率,这三者密切相关,它们之间的关系: