基于OWPB和LS-SVM的电路板故障诊断系统
扫描二维码
随时随地手机看文章
摘 要: 针对雷达电路板检修困难的问题,提出了基于最优小波包基和最小二乘支持向量机相结合的雷达电路板故障诊断方法。利用小波变换对采样数据进行去噪处理,通过小波包分解选择最优小波包基提取熵值作为故障特征向量,并作为基于最小二乘支持向量机的雷达故障诊断模型的输入向量,经诊断模型输出后,完成雷达电路板故障诊断。基于此方法设计了雷达电路板故障诊断系统,提高了雷达故障诊断的正确性和效率。
关键词: 最优小波包; 最小二乘支持向量机; 熵; 故障诊断
随着高新技术广泛用于军用雷达,使得雷达系统变得越来越复杂,但操作更加简单和智能化。现代战争中,雷达的作用也越来越重要,战场不仅要求雷达具有全天候的作战能力、优越的性能指标、极高的自动化程度及高可靠性,更重要的是要求雷达维修保障人员能够进行战场快速抢修,确保雷达装备的完好率。因此,对于雷达装备的智能化维修保障也提出了更高的要求。人工神经网络[1]存在训练样本大、隐层节点数目选取等问题;专家系统[2]由于依赖于雷达专家知识,运用某种规则进行推理,因此在自适应能力和学习能力方面存在局限性。本文针对当前基层部队无法对电路板进行维修的现状及难点,提出了基于小波去噪及小波包变换与最小二乘支持向量机相结合的雷达故障诊断方法,并基于此设计了某型雷达电路板故障诊断系统,旨在提高部队基层雷达装备自我维修保障能力,确保战时能够实现战场的快速抢修。应用结果表明,该方法提高了雷达故障诊断的有效性和优越性。
支持向量机[3]SVM(Support Vector Machine)是在统计学习理论SLT(Statistical Learning Theory)的基础上发展起来的十分有效的分类方法,它基于最小的结构风险,解决了学习机的学习能力和泛化能力之间的矛盾。支持向量机通过核函数把原始数据空间映射到高维的特征空间,在特征空间最大化分类间隔构造最优分类超平面,其中分类面只需要少量的支持向量。SVM克服了神经网络的不足,在解决小样本、非线性及高维模式识别问题中表现出结构简单、全局最优、泛化能力强等许多特有的优势。最小二乘支持向量机[4,5]LS-SVM(Least Squares Support Vector Machine)是SVM的扩展,采用最小二乘线性系统代替SVM用二次规划的方法实现学习问题,避免了SVM的凸二次规划问题的求解。
2.2 模型算法
LS-SVM是在SVM的基础上进行改进而提出的,它用二次损失函数取代了SVM中的不敏感一次损失函数,将二次寻优变为对线性方程组的求解,简化了计算复杂性,并且约束条件由不等式改为等式[9],优化问题成为:
2.3 实施步骤
在LS-SVM算法中,规则化参数γ和RBF核函数的标准化参数δ通常根据经验选取一个具体的值,但δ取值不同,结果变化较大。因此,在应用中要进行效果比较,动态选取。具体步骤为:
(1)训练数据导入。LS-SVM方法和神经网络一样,需要训练样本和测试样本。
(2)数据处理与特征提取。对样本数据进行处理可以提高训练速度,特征提取是指当样本空间维数较高时,通过映射或变换的方法,将数据样本变为低维空间数据,以达到降维的目的。
(3)样本训练。在对样本进行训练之前,需要确定LS-SVM模型的两个重要参数,即惩罚参数γ(gam)和径向基核参数δ(sig2)。本文采用交叉验证法(网格法搜索),在工具箱中,使用 tunelssvm函数,其中包含了网格搜索,对gam、sig2进行优化选择。
(4)采用测试样本进行测试。需要使用函数simlssvm,类似于神经网络中的sim函数。
3 故障诊断系统设计
3.1 系统简介
系统以Windows为平台,采用Visual Studio 2008为开发工具,以SQL2005为后台数据库生成软件系统。故障检测定位模块采用Matlab编写,系统采用混合编程方法,输入数据即可完成实时在线故障诊断。该系统具有电路板故障检测定位、电路板信号查询和数据库管理等功能。系统的结构如图3所示。
3.2 功能简介