当前位置:首页 > 嵌入式 > 嵌入式硬件


1 引言

充电器反接会损坏DS2726锂离子(Li+)电池保护器。由于有些器件引脚对负电压非常敏感,导致器件不能正常工作,虽然DS2726的高边P沟道FET关断,但该器件的一些引脚仍无法承受负电压,本文在介绍DS2726的基础上,提出了两种保护方案:一种方案是增加肖特基二极管以箝位DS2726相应引脚电压;另一种方案是提高这些对负电压敏感的引脚阻抗,以限制电流,功耗。通过这些简单设计方案使DS2726能够在充电器反接的情况下不被损坏。

2 DS2726简介

DS2726是一款集成电压、电流检测和电池均衡功能的独立保护器件,可用于5~10节锂离子(Li+)电池组。

DS2726采用高端P沟道保护FET实现过压、欠压、放电电流和短路保护。保护电路监测每节电池的电压以检测过压和欠压状态。另外,高端保护允许主系统在故障状态导致保护FET关断的情况下,仍能与DS2788等电量计保持通信。

DS2726无需通过外部微控制器配置器件,简化了设计并降低了成本。可通过引脚设置电压保护和电池均衡门限;过度放电和短路电流限制则由外部电阻设置;过度放电和短路电流超时延时由外部电容设置。

DS2726在提供可靠保护的同时能够保证所有电池被均匀地充电,从而延长电池使用寿命。电池均衡期间,内部开关可提供150 mA(典型值)旁路电流。电池均衡可以在检测到充电器时自动开启,或通过控制引脚上的信号开启,提高了灵活性。

DS2726提供节省空间的7 mm×7 mm、32引脚TQFN封装。DS2726可为5~10节锂离子(Li+)电池组提供完备的充电和放电保护。保护电路分别监测各节电池电压,以检测是否处于过压和欠压状态。用户可通过外部电阻设置限流门限,以保护器件免受过放电电流和短路电流的损坏。采用高边P沟道保护FET,由片上10 V FET驱动器驱动。电池均衡电路确保所有电池均衡充电。图1为DS2726引脚配置。



DS2726引脚功能描述如下:

RSC(引脚1):短路门限。该引脚到电池组的正极之间的电阻选择放电方向短路状态下的门限电压;RDOC(引脚2):放电过流电压门限。该引脚与电池组的正极之间所连接的电阻可选择过流状态下在放电方向上的门限电压;Vcc(引脚3):稳压输出。Vcc为内部电路提供电源,并将配置引脚拉高至VIN该引脚应连接1只至少0.1 μF的陶瓷电容旁路至GND;SEL0,SEL1(引脚4、5):电池组所选电池节数。该引脚为三级输入。接地或与Vcc相连分别实现逻辑低或逻辑高,悬空则实现中级门限;CDOCD(引脚6):放电过流延迟时间。该引脚与GND之间所连接的电容用于设置DC FET关断前放电过流状态必须保持的时间;SLEEP(引脚7):睡眠模式选择输入。驱动该引脚为逻辑低强制DS2726进入最低功耗状态。若施加充电电压,DS2726退出睡眠模式。当CBCFG为高电平,该引脚的逻辑高使能电池均衡;CSCD(引脚8):短路电流延迟时间。该引脚与CND之间所连接的电容用于设置DCFET关断前短路电流状态必须保持的时间;CBCFG(引脚9):充电均衡配置输入。当为逻辑低时,若VPKP>VVIN+ VCDET,充电均衡使能;当为逻辑高时,若SLEEP引脚为逻辑高,则充电均衡使能;CBS0,CBS1(引脚10、11):选择电池均衡电压。该引脚输入为三级输入,接地或接VCC分别实现逻辑低或逻辑高,悬空则实现中级门限;OVS0,OVS1(引脚12、13):选择过压门限。该引脚输人为三级输入,接地或接VCC分别实现逻辑低或逻辑高,悬空则实现中级门限。N.C(引脚14、30):悬空,内部无连接;GND(引脚15):接地。接至最低电压电池的负极;V00~V10(引脚16~26):负极电压检测。连接至电池组中的第一节电池的负极;VIN(引脚27):连接至最大电池正极;DC(引脚 28):放电控制输入。CC控制充电FET的栅极,驱动PKP至VOLCC,并导通或关断充电FET;SNS(引脚29):检测输入。连接至充电和放电 FET的漏极。作为基准电压检测短路和放电过流状态;CC(引脚31):充电控制输人。CC控制充电FET的栅极,驱动PKP至VOLCC,并导通或关断充电FET;PKP(引脚32):电池组正极。PKP电压用于检测充电器附件或保护释放状态。

3 DS2726设计应用

在DS2726典型应用电路的基础上,通过简单的设计修改,可利用DS2726 Li+电池保护器承受负电压,在充电器反接时为电池提供保护。图2为采用DS2726的电池保护电路。



3.1 保护PKP引脚

PKP引脚容易暴露在充电反接电压下,典型应用电路中,该引脚已接有1个肖特基二极管,能够防止感应冲击(产生过流),使该引脚拉至地电位以下。唯一需要修改的是提高PKP阻抗,从而限制流过肖特基二极管的电流。10节电池使用42 V充电器。60 V肖特基二极管具有Vf= 0.45 V。RPKP电压为:-42 V-(-0.45 V)=-41.55 V。假设使用250 mW的电阻则:250 mW=(-41.55 V)2/RPKP,其中,RPKP=6.905 kΩ。

3. 2 利用变阻器保护CC FET

CC是另一个暴露于负电压的引脚,正常工作条件下,CC驱动充电控制器 FET的栅极,电压摆幅达到PKP引脚电压以关断场效应管。CC引脚拉至PKP电压以下约10 V时,FET导通。由于PKP将被箝位在-0.45 V,CC无法打开FET。然而,充电控制FET只能承受±20 V的栅-源电压。如果在充电控制器FET的栅极和源极之间增加变阻器V2,可保护CC FET免于损坏。如果没有V2,栅-源电压将达到-42 V左右,这将超出FET的额定值。

变阻器V2在16V打开,箝制栅-源电压。则CC FET电压为:-42V+16V=-26V。CC电阻两端的压降:-26V-(-0.45V)=-2555V。假定使用250mW的电阻则:250mW= (-25.55V)2/RCC其中,RCC=1.857 kΩ。更大的CC和PKP电阻会导致充电控制器FET的通/断时间增大,从而使FET打开时在线性区域停留较长时间。实际应用中这个问题并不严重,因为电流受充电器限制。

3.3 箝位SNS引脚

尽管CC FET关断,负电压作用在PK+使其体二极管导通。使SNS 出现负电压,SNS是最后一个需要肖特基二极管箝位的引脚。保护FET漏极电压:-42 V+O.6 V=-41.4 V。SNS引脚电压将箝位在-0.45 V。SNS电阻两端压降:-41.4V-(-0.45V)=-39.95 V。假设使用250 mW的电阻:250 mW=(-39.95 V)2/RCC,其中,RCC=6.384 kΩ。比较器SNS引脚将吸收约1μA电流:1μA×6.384kΩ=6.384 mV。

这将在过电流门限引入误差约6.4 mV。如果使用额定功率更大的电阻,可以减小电阻值,从而降低这个误差。注意:SNS端的RC滤波器时间常数随着电阻的提高而改变。因此,电容值也要相应改变,以维持适当的时间常数。SNS的时间常数应该与RDOC和RSC时间常数相一致。如果这些引脚的时间常数不一致,会在过流门限引入额外误差。

4 结论

DS2726 Li+电池保护器经过电路修改后,能够在充电器反接时保护电池组。设计中虽然作出了一些折中考虑,但不会对保护器的整体工作性能造成影响。本文计算假设使用额定功率为250 mW的电阻。如果选择额定功率更大的电阻,可以减小电阻值。较小的阻值有助于降低对过流门限产生的误差电压,也可以减小通/断时间。还需注意的是确保不要超过肖特基二极管的额定电流。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭