当前位置:首页 > 嵌入式 > 嵌入式硬件

作者:王 勇 李德华 薛 雷 钱铮铁 何 伟 摘要:结合高速dsp图像处理系统讨论了高速数字电路中的信号完整性问题,分析了系统中信号反射、串扰、地弹等现象破坏信号完整性的原因,通过先进is工具的辅助设计,找出了确保系统信号完整性的具体方法。 关键词:高速电路设计 信号完整性 dsp系统 深亚微米工艺在ic设计中的使用使得芯片的集成规模更大、体积越来越小、引脚数越来越多;由于近年来ic工艺的发展,使得其速度越来越高。从而,使得信号完整性问题引起电子设计者广泛关注。 在视频处理系统中,多维并行输入输出信号的频率一般都在百兆赫兹以上,而且对时序的要求也非常严格。本文以dsp图像处理系统为背景,对信号完整性进行准确的理论分析,对信号完整性涉及的典型问题[1]——不确定状态、传输线效应、反射、串扰、地弹等进行深入研究,并且从实际系统入手,利用is仿真软件寻找有效的途径,解决系统的信号完整性问题。1 系统简介 为了提高算法效率,实时处理图像信息,本图像处理系统是基于dsp+fpga结构设计的。系统由saa7111a视频***、ti公司的tms320c6701 dsp、altera公司的eplk50qc208 fpga、pci9054 pci接口控制器以及sbram、sdram、fifo、flash等构成。fpga是整个系统的时序控制中心和数据交换的桥梁,而且能够对图像数据实现快速底层处理。dsp是整个系统实时处理高级算法的核心器件。系统结构框图如图1所示。 在整个系统中,pcb电路板的面积仅为15cm×l5cm,系统时钟频率高达167mhz,时钟沿时间为0.6ns。由于系统具有快斜率瞬变和极高的工作频率以及很大的电路密度,使得如何处理高速信号问题成为一个制约设计成功的关键因素。2 系统中信号完整性问题及解决方案2.1 信号完整性问题产生机理 信号的完整性是指信号通过物理电路传输后,信号接收端看到的波形与信号发送端发送的波形在容许的误差范围内保持一致,并且空间邻近的传输信号间的相互影响也在容许的范围之内。因此,信号完整性分析的主要目标是保证高速数字信号可靠的传输。实际信号总是存在电压的波动,如图2所示。在a、b两点由于过冲和振铃[2]的存在使信号振幅落入阴影部分的不确定区,可能会导致错误的逻辑电平发生。总线信号传输的情况更加复杂,任何一个信号发生相位上的超前或滞后都可能使总线上数据出错,如图3所示。图中,clk为时钟信号,d0、d1、d2、d3是数据总线上的信号,系统允许信号最大的建立时间[1]为△t。在正常情况下,d0、d1、d2、d3信号建立时间△t1△t,系统在△t时刻将从总线上得到错误数据信息,产生错误的控制信号,扰乱了正常工作,使信号完整性问题更加复杂,如图3(b)所示。2.2 信号的反射 信号的反射就是指在传输线端点上有回波。当传输线上的阻抗不连续时,就会导致信号反射的发生。在这里,以图4所示的理想传输线模型来分析与信号反射有关的重要参数。图中,理想传输线l被内阻为ro的数字信号驱动源vs驱动,传输线的特性阻抗为zo,负载阻抗为rl。在临界阻抗情况下,ro=zo=rl,传输线的阻抗是连续的,不会发生任何反射。在实际系统中由于临界阻尼情况很难满足,所以最可靠的适用方式是轻微的过阻尼,因为这种情况没有能量反射回源端。 负载端阻抗与传输线阻抗不匹配会在负载端(b点)反射一部分信号回源端(a点),反射电压信号的幅值由负载反射系数几决定,可由下式求出:pl=(rl-z0)/(rl+z0) (1) 式中,pl称为负载电压反射系数,它实际上是反射电压与入射电压之比。由式(1)可知—1≤pl≤+1,当rl=zo时,pl=0,不会发生反射。可见,只要根据传输线的特性阻抗进行终端匹配,就能消除反射。从原理上说,反射波的幅度可以大到入射电压的幅度,极性可正可负。当rl0,处于欠阻尼状态,反射波极性为正。当从负载端反射回的电压到达源端时,又将再次反射回负载端,形成二次反射波,此时反射电压的幅值由源反射系数ps决定,可由下式求出:ps=(r0-zo)/(r0+z0) (2)在高速数字系统中,传输线的长度符合下式时应使用端接技术:l>tr/(2tpdl) (3) 式中,l为传输线线长,tr为源端信号的上升时间,tpdl为传输线上每单位长度的带载传输延迟。即当tr小于2td(td为传输延时)时,源端完整的电平转移将发生在从传输线的接收端反射回源端的反射波到达源端之前,这需要使用端接匹配技术,否则会在传输线上引起振铃。 结合图1设计本系统时,采用mentorgraphics公司的信号完整性分析工具interconnectsynthesis(is),信号驱动器和接收器均使用ttl_s工艺器件的ibis模型进行电路仿真,选择出正确的布线策略和端接方式。dsp与sbsram接口的时钟高达167mhz,时钟传输和延时极小,很容易在信号线出现反射现象。根

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭