当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]运算放大器(简称“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。

运算放大器(简称“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。它是一种带有特殊耦合电路及反馈的放大器。其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。

运算放大器是一种可以进行数学运算的放大电路。运算放大器不仅可以通过增大或减小模拟输入信号来实 现放大,还可以进行加减法以及微积分等运算。所以,运算放大器是一种用途广泛,又便于使用的集成电路。

运算放大器的电路符号有正相输入端Vin(+)和反相输入端Vin(-)两个输入引脚,以及一个输出引脚Vout。实际上运算放大器还有电源引脚(+电源、-电源)和偏移输入引脚等,在电路符号上没有表示出来。

运算放大器的主要功能是以高增益放大、输出2个模拟信号的差值。我们将放大2个输入电压差的运放称为差动放大器。当Vin(+)电压较高时,正向放大输出 。当Vin(-)电压较高时,负向放大输出。此外,运算放大器还具有输入阻抗极大和输出阻抗极小的特征。

 

 

即使输入信号的差很小,由于运算放大器有极高 的放大倍数,所以,也会导致输出最大或最小电压值。因此,常常要加负反馈后使用。下面让我们来看一个使用了负反馈的放大器电路。

反相放大器电路具有放大输入信号并反相输出的功能。“反相”的意思是正、符号颠倒。这个放大器应用了负反馈技术。所谓负反馈,即将输出信号的一部分返回到输入,在图2所示电路中,象把输出Vout经由R2连接(返回)到反相输入端(-)的连接方法就是负反馈。

我们来看一下这个反相放大器电路的工作过程。运算放大器具有以下特点,当输出端不加电源电压时,正相输入端(+)和反相输入端(-)被认为施加了相同的电压,也就是说可以认为是虚短路。所以,当正相输入端(+)为0V时,A点的电压也为0V。根据欧姆定律,可以得出经过R1的I1=Vin/R1。

另外,运算放大器的输入阻抗极高,反相输入端(-)中基本上没有电流。因此,当I1经由A点流向R2时,I1和I2电流基本相等。由以上条件,对 R2使用欧姆定律,则得出Vout=-I1×R2。I1为负是因为I2从电压为0V的点A流出。换一个角度来 看,当反相输入端(-)的输入电压上升时,输出会被反相,向负方向大幅度放大。由于这个负方向的输出电压经由R2与反相输入端相连,因此,会使反相输入端(-)的电压上升受阻。反相输入端和正相输入端电压都变为0V,输出电压稳定。

 

 

那么我们通过这个放大器电路中输入与输出的关系来计算一下增益。增益是Vout和Vin的比,即Vout/Vin=(-I1×R2)/(I1×R1)=-R2/R1。所得增益为-表示波形反向。

在这个算公式中需要特别注意的地方是,增益仅由R1和R2电阻比决定。也就是说。我们可以通过改变电阻容易地改变增益。在具有高增益的运算放大器上应用负反馈,通过调整电阻值,就可以得到期望的增益电路。

与反相放大器电路相对, 图3所示电路叫做正相放大器电路。与反相放大器电路最大的不同是,在正相放大器电路中,输入波形和输出波形的相位是相同的,以及输入信号是加在正相输入端(+)。与反相放大器电路相同的是,两个电路都利用了负反馈。

我们来看一下这个电路的工作过程。首先,通过虚短路,正相输入端(+)和反相输入端 (-)的电压都是Vin,即点A电压为Vin。根据欧姆定律,Vin=R1×I1。另外,运算放大器的两个输入端上基本没有电流,所以 I1=I2。而Vout为R1与R2电压的和,即Vout=R2×I2+R1×I1。 整理以上公式可得到增益G,即G=Vout/Vin=(1+R2/R1)。

如果撤销这个电路中的R1,将R2电阻变为0Ω 或者短路,则电路变为增益为1的电压跟随器。这种电路常用于阻抗变换和缓冲器中。

Comparator也可称为比较器,比较两个电压的大小,然后输 出1(+侧的电源电压,图示为VDD)或0(-侧的电源电压)。比较器常常用于检测输入是否达到规定值。也可以用运算放大器来代替比较器,但一般情况下使用专用的比较器IC。比较器和运算放大器使用相同电路符号。

我们来看一下这个电路的工作过程。首先应该注意,这个电路中没有正反馈也没有负反馈。放大Vin和VREF的差值,从Vout输出。例如,Vin大于VREF时,放大输出的Vout上升至+侧的电源电压,达到饱和。Vin小于VREF时,输出Vout下降至-侧电源电压达到饱和。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭