当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]摘要:分析了μC/OS-II实时操作系统在内存管理上存在的不足,提出了改进方法,通过一个具体实例描述了该方法的实现。关键词:实时操作系统 内存管理 微处理器 链接器μ

摘要:分析了μC/OS-II实时操作系统内存管理上存在的不足,提出了改进方法,通过一个具体实例描述了该方法的实现。

关键词:实时操作系统 内存管理 微处理器 链接器

μC/OS-II是一种开放源码的实时操作系统,具有抢先式、多任务的特点,已被应用到众多的微处理器上。虽然该内核功能较多,但还是有不甚完善的地方。笔者在分析使用中发现,内核在任务管理(包括任务调度、任务间的通信与同步)和中断管理上是比较完善的,具有可以接受的稳定性和可靠性;但在内存管理上显得过于简单,内存分区的建立方式有不合理之处。

1 内存管理不足之处的分析

在分析许多μC/OS-II的应用实例中发现,任务栈空间和内存分区的创建采用了定义全局数组的方法,即定义一维或二维的全局数组,在创建任务或内存分区时,将数组名作为内存地址指针传递给生成函数。这样实现起来固然简单,但是不够灵活有效。

编译器会将全局数组作为未初始化的全局变量,放到应用程序映像的数据段。数组大小是固定的,生成映像后不可能在使用中动态地改变。对于任务栈空间来说,数组定义大了会造成内存浪费;定义小于了任务栈溢出,会造成系统崩溃。对于内存分区,在不知道系统初始化后给用户留下了多少自由内存空间的情况下,很难定义内存分区所用数组的大小。总之利用全局数组来分配内存空间是很不合理的。

另外,现在的μC/OS-II只支持固定大小的内存分区,容易造成内存浪费。μC/OS-II将来应该被改进以支持可变大小的内存分区。为了实现这一功能,系统初始化后能清楚地掌握自由内存空间的情况是很重要的。

2 解决问题的方法

为了能清楚掌握自由内存空间的情况,避免使用全局数组分配内存空间,关键是要知道整个应用程序在编译、链接后代码段和数据段的大小,在目标板内存中是如何定位的,以及目标板内存大小。对于最后一条,系统编程人员当然是清楚的,第一条编译器会给出,而如何定位是由编程人员根据具体应用环境在系统初始化确定的。因此,系统初始化时,如果能正确安排代码段和数据段的位置,就能清楚地知道用户可以自由使用的内存空间起始地址。用目标板内存最高端地址减去起始地址,就是这一自由空间的大小。

3 举例描述该方法的实现

下面以在CirrusLogic公司的EP7211微处理器上使用μC/OS-II为例,描述该方法的实现过程。假设基于μC/OS-II的应用程序比较简单,以简化问题的阐述。

3.1 芯片初始化过程和链接器的功能

EP7211采用了RISC体系结构的微处理器核ARM&TDMI,该芯片支持内存管理单元MMU。系统电复位后,从零地址开始执行由汇编语言编写的初始化代码。零地址存放着中断向量表,第一个是复位中断,通过该中断向量指向的地址可以跳转到系统初始化部分,

执行微处理器寄存器初始化。如果使用虚拟内存,则启动MMU,然后是为C代码执行而进行的C环境初始化。之后创建中断处理程序使用的栈空间,最后跳转到C程序的入口执行系统C程序。

对于应用程序,ARM软件开发包括提供的ARM链接器会产生只读段(read-only section RO)、读写段(read-write section RW)和零初始化段(zero-initialized section ZI)。每种段可以有多个,对较简单程序一般各有一个。

只读段就是代码段,读写段是已经初始化的全局变量,而零初始化段中存放未初始化的全局变量。链接器同时提供这三种段的起始地址和结束地址,并用已定义的符号表示。描述如下:Image$$RO$$Base表示只读段的起始地址,Image$$RO$$Limit表示只读段结束后的首地址;Image$$Limit表示读写段结束后的首地址;Image$$ZI$$Base表示零初始化段的起始地址,Image$$ZI$$Limit表示零初始化段结束后的首地址。

一般嵌入式应用,程序链接定位后生成bin文件,即绝对地址空间的代码,因此上述符号的值表示物理地址。对于简单程序,可在编译链接时指定RO和RW的基础址,帮助链接器计算上述符号的值。对于较复杂的程序可以由scatter描述文件来定义RO和RW的基地址。

3.2 具体实例及说明

所谓C环境初始化,就是利用上述符号初始化RW段和ZI段,以使后面使用全局变量的C程序正常运行。下面是初始化部分的实例:

ENTRY ;应用程序入口,应该位于内存的零地址。

;中断向量表

B Reset_Handler

B Undefined_Handler

B SWI_Handler

B Prefetch_Handler

B Abort_Handler

NOP ;保留向量

B IRQ_Handler

B FIQ_Handler

;当用户使用除复位中断以外的几个中断时,应将跳转地址换成中断处理程序的入口地址。

Undefined_Handler

B Undefined_Handler

SWI_Handler

B SWI_Handler

Prefetch_Handler

B Prefech_Handler

Abort_Handler

B Abort_Handler

IRQ_Handler

B IRQ_Handler

FIQ_Handler

B FIQ_Handler

;程序初始化部分

Reset_Handler

;初始化微处理器寄存器,以使其正常工作。

……

;启动MMU,进入虚拟内存管理。

……

;初始化C环境。

IMPORT |Image$$RO$$Limit|

IMPORT |Image$$RW$$Base|

IMPORT |Image$$ZI$$Base|

IMPORT |Image$$ZI$$Limit|

LDR r0,=|Image$$RO$$Limit|

LDR r1,=|Image$$RW$$Base|

LDR r3,=|Image$$ZI$$Base|

CMP r0,r1

BEQ %F1

0 CMP r1,r3

LDRCC r2,[r0],#4

STRCC r2,[r1],#4

BCC $B0

1 LDR r1,=|Image$$ZI$$Limit|

MOV r2,#0

2 CMP r3,r1

STRCC r2,[r3],#4

BCC %B2

在RAM中初始化RW段和ZI段后,ZI段结束后的首地址到系统RAM最高端之间的内存就是用户可以自由使用的空间,也就是说Image$$ZI$$Limit是这一内容空间的起始地址。

如果系统使用了 FIQ和IRQ中断,在ZI段之后可以创建这两种中断的栈空间,然后是操作系统使用的SVC模式下的栈空间,假设每一个栈大小为1024个字节。如果系统使用了定时器,还可在此之后创建定时器中断的栈空间,假设其大小也为1024个字节。此时自由内存空间的起始地址变为:

Image$$ZI$$Limit+1024×4

在初始化代码的最后将其作为一个参数传递到C程序入口,代码如下:

LDR r0,=|Image$$ZI$$Limit|

;创建IRQ栈空间。

……

;增加地址指针。

ADD r0,r0,#1024

;创建FIQ栈空间。

……

;增加地址指针。

ADD r0,r0,#1024

;创建SVC栈空间。

……

;增加地址指针。

ADD r0,r0,#1024

;创建定时器中断栈空间。

……

;增加地址指针。

ADD r0,r0,#1024

;导入C代码入口点。

IMPORT C_ENTRY

;跳转到C代码,此时r0作为入口参数。

B C_ENTRY

3.3 对实例的总结

在C程序中,上述起始地址可以作为内存分区创建函数OSMemCreate()的内存地址参数,内存分区的最大值就是目标板RAM的最高端地址减去起始地址的值。图1显示了RO段在RAM中的内存分布情况,这种情况下,程序映像一般被保存目标板内存中。系统从闪存启动后,将RO段拷贝到RAM中继续执行。图2显示了RO段在闪存中,RW和ZI段在RAM中的情况。这种情况下,系统启动和代码的执行都发生在闪存中。

用户知道起始地址的值和自由内存的大小后,就可以清楚、灵活地建立和使用内存分区了。可以根据具体需要建立一些大小不同的内存分区,任务栈、事件控制块和消息队列都可以在这些内存分区中分配。系统可以非常清晰地掌握内存使用情况。

本文针对一种芯片描述了如何实现对μC/OS-II内存管理的改进。对于其它类型的微处理器,例如CISC指令集的芯片,虽然具体实现过程有所不同,但思路是一样的。

μC/OS-II的内存管理还有需要改进的地方,例如,现在的内存管理只支持固定大小的分区,而实际应用中有动态分配非固定分区的需求。这就要求μC/OS-II有实现该功能的软件结构和内存分配、回收算法。现在能清楚地掌握系统初始化后内存分布情况,为今后实现这些软件结构和算法打下了基础。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭