当前位置:首页 > 嵌入式 > 嵌入式硬件

摘要:今天的高性能ASIC和微处理器可能会消耗高达150W的功率。对于1V至1.5V的电源电压,这些器件所需的电流很容易超出100A。采用多相DC-DC转换器为这些器件提供电力是更加可行的方案。

目前,已出现了可裁减的电源控制器,它允许设计者为特定的DC-DC转换器选择相数。可裁减架构允许几个控制器并联且同步工作。片上基于PLL的时钟发生器使多个器件能够同步工作。

多相拓扑

虽然单相buck调节器并没有严格的功率限制,但是当负载电流上升至20A至30A以上时,多相转换器将具备明显的优势。这些优势包括:更低的输入纹波电流,大幅度减少了输入电容数量;由于等效倍增了输出纹波频率,输出纹波电压也降低了;由于损耗分布在更多元件中,元件的温度也有所降低;并且外部元件的高度也降低了。

多相转换器实质上是多路buck调节器并联工作,它们的开关动作保持同步,相位偏离360/n度,其中n等于相数。转换器的并联使输出调节变得稍微复杂了一点。这个问题很容易利用电流模式的控制IC解决,这种控制器除了调节输出电压外还调节每个电感中的电流。

输入纹波电流

在选择输入电容时,设计者面临的关键问题是输入纹波电流的处理。多相拓扑的采用使输入纹波电流大幅度降低了—每相的输入电容只需处理更低幅度的输入电流脉冲。另外,相位偏离也增加了电流波形的等效占空比, 因而产生更低的RMS纹波电流。表1列出的纹波电流值说明了纹波电流的降低和输入电容的节省情况。

高k电介质的陶瓷电容能够提供最高的纹波电流处理能力和最小的PCB占位面积。1812外形的陶瓷电容每个的额定纹波电流高达2A至3A。对于成本敏感的设计,电解电容是很好的选择。

降低输出纹波电压

内核电源通常要求<2%的精度。对于一个1.2V电源,这相当于±25mV的输出电压窗口。一种被称为有源电压定位的技术可以充分利用这个输出电压窗口。轻载时,转换器将输出电压调节到该窗口的中点以上,重载时,则将输出电压调节到窗口的中点以下。对于±25mV窗口,在轻载(重载)下将输出调节在窗口的高端(低端),那么整个输出电压窗口就可被用于响应上升(下降)的阶跃负载。

大幅度的负载电流阶跃要求电容具有极低的ESR以减小瞬态电压,同时还要求电容具有足够大的容量,以便负载向下跳变时吸收存储在主电感中的能量。有机聚合物电容比钽电容有更低的ESR。聚合物电容具有最低的ESR和最高的容量。陶瓷电容具有出色的高频特性,但每个器件的容量只是钽或聚合物电容的二分之一到四分之一。所以,通常来讲陶瓷电容并不是输出电容的最佳选择。

低侧MOSFET

一个12V到1.2V的转换器要求低侧MOSFET在90%的时间内导通;在此情况下传导损耗远高于开关损耗。由于这个原因,常常将二或三只MOSFET并联使用。多个MOSFET并联工作有效降低了RDS(ON),因而降低了传导损耗。当MOSFET被关闭时,电感电流继续通过MOSFET的体二极管流通。在此条件下,MOSFET的漏极电压基本上为零,大幅度降低了开关损耗。表1给出了几种多相配置的损耗情况。注意低侧MOSFET的总损耗随着相数的增多而降低了,因而降低了MOSFET的温升。

高侧MOSFET

占空比为10%时,高侧MOSFET的开关损耗远大于传导损耗。因为高侧MOSFET只在很少的时间内导通,传导损耗不太明显。这样,降低开关损耗比降低导通电阻更为重要。在开关过程中(tON和tOFF),MOSFET需要承受一定的电压和传输电流,这个电压与电流的乘积决定了MOSFET的峰值功率损耗;因此开关时间越短功率损耗越小。在选择高侧MOSFET时,应选择具有较低栅极电荷和栅-漏电容的器件,这两项指标比低导通电阻更为重要。从表1可以看出,MOSFET的总损耗随着相数的增多而降低。

电感的选择

电感值决定了纹波电流的峰-峰值。纹波电流通常用最大直流输出电流的百分比表示。对于大多数应用,可以选择纹波电流为最大直流输出的20%到40%。

内核电压较低时,电感电流的衰减速度不如上升速度快。当负载降低时,输出电容会被充入过量电荷,造成过压现象。如果选用数值较小的电感(产生较大的纹波电流—接近40%),则向输出电容转移的电感储能较少,引起的浪涌电压较低。

散热设计

表1给出了使用不同相数时对于散热要求的一个估计。在一个提供100LFM至200LFM的强制对流冷却系统中,单相设计需要采用相当大的散热器来获得0.6°C/W的热阻。而在四相设计中热阻可以增大到2°C/W。这个热阻无须散热器和100LFM至200LFM的气流就很容易实现。

表1. 采用不同相数设计的同步buck调节器及其重要参数对比,本例为12V到1.2V、100A buck调节器


设计实例

图1是用MAX5038配置成的一个四相DC-DC转换器。MAX5038主控制器的远端电压检测器(VSP至VSN引脚)检测输出电压,并同时为主/从控制器的EAN输入提供信号(DIFF),以实现并联工作。MAX5038主控制器还为另一个MAX5038从控制器提供一个时钟输出(CLKOUT)。将PHASE引脚浮空,使从控制器的内部时钟与CLKIN信号产生90°相移。通过设置合适的增益,误差放大器还可实现有源电压定位功能。采用精密电阻设置增益可以确保精确的负载均衡。误差放大器的输出(EAOUT)决定了各相的负载电流。每个电流环在CLP1和CLP2引脚进行补偿(未显示),经过适当补偿,可以在大多数输入和负载情况下提供非常稳定的输出。



图1. 采用两片MAX5038的四相设计实例。主控制器执行电压遥测功能和时钟产生功能,从控制器扩展输出电流并与主控制器同步工作。

结论

多相同步DC-DC转换器能够有效地驱动工作在1V至1.5V、消耗电流100A甚至更高的ASIC或处理器。它们解决了很多基本问题,包括电容器纹波电流,MOSFET功耗,瞬态响应,以及输出电压纹波等。



马雅历

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭