一种基于ARM 单片机与CPLD的数字轴角转换方法(一)
扫描二维码
随时随地手机看文章
介绍一种基于ARM 单片机和CPLD的数字-轴角转换实现方法,采用PWM 调制波控制全桥驱动电路的方式实现DSC;MCU通过查表法计算调制波对应占空比,CPLD根据地址及占空比完成对应通道的PWM 调制信号的产生,全桥驱动器根据PWM 信号控制由4个互补MOS管组成的H桥电路产生对应轴角的正余弦旋转变压器驱动信号并经Scott变压器得到可驱动同步机的三相信号从而实现同步机的驱动;采用查表法计算调制信号占空比,可提高运算效率及系统实时性能;利用PWM 控制全桥驱动方式具有效率高.发热低等优点;经实验测试,系统精度可达0.5密位(20:1粗精结合),此外,对比其它传统DSC实现方法,实现简单,效费比高,满足实际需要.
0 同步机.正余弦旋转变压器等广泛应用于火力控制.航空航天.自动控制等领域以实现系统间轴角信息的传输.由于计算机技术在上述领域的广泛应用,数字-轴角转换已(Digitalto Shaft-angle Converting,DSC)成为一个重要的问题.市场上DSC集成模块产品价格较高且接口不够灵活,在某些领域应用受到限制,特别在多路DSC使用时效费问题更为突出.基于上述问题,提出一种采用ARM 单片机+CPLD实现数字-轴角转换的方法.
1 数字-轴角转换原理数字-轴角转换(DSC)是将数字形式表示的轴角度θ通过运算电路转换为正余弦旋转变压器形式的电压(如式(1)),经正余弦旋转变压器和经过Scott变压器后驱动同步机指向对应轴角位置,从而完成数字-轴角转换.
当同步机.正余弦旋转变压器的激磁绕组电压为U0 =Umsinωt时,则正余弦旋转变压器两相绕组输出电压为:
URS =KRUmsinωtsinθ
URC =KRUmsinωtcosθ
驱动同步机三相绕组电压为:
US1 =KSUmsinωtsinθ
US2 =KSUmsinωtsin(θ+120°)
US3 =KSUmsinωtsin(θ-120°)
其中,KR ?KS分别为正余弦旋转变压器和同步机的变压比,θ为轴角位置.
为了将两相正余弦旋转变压器信号变为三相同步机信号,需使用Scott变压器.其基本构造及原理分析如图1所示.
在图1 (a)中,URS ?URC是空间两相正余弦旋转变压器信号,将两变压器按图中抽头连接,如图1 (b)的相量图分析:
Us1 =URS
US2 =-0.5URS -0.866URC
US3 =-0.5URS +0.866URC
这样就将空间两相正余弦旋转变压器信号转变为空间的三相同步机信号.
2 硬件设计
2.1 总体设计
以一路DSC为例,系统的硬件结构如图2所示.工作原理为:STM32F407微控制器为主控芯片,通过通信接口接收外部输入的轴角信号θ,并对其进行粗精分离及利用查表法计算对应占空比大小,通过总线方式将通道对应地址及占空比对应数据信息送入CPLD;CPLD根据数据及地址信息产生对应通道和占空比的PWM 信号;由4个互补MOS管构成的全桥驱动电路由全桥驱动器UBA2032根据PWM 信号控制全桥电路开断,并经选频电路后产生对应轴角的调制波,经Scott变压器转变为三相信号后驱动同步机指向对应轴角位置即完成系统的数字-轴角转换.