当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]随着通信与广播电视业务的发展,无线电频谱迅速、大量的被占用,频道拥挤和相互间干扰日趋严重,为了能有效地利用无线电频谱,减少相互间的干扰,信号监测业务随之成为必要。调幅广播信号监测系统。

引言

随着通信与广播电视业务的发展,无线电频谱迅速、大量的被占用,频道拥挤和相互间干扰日趋严重,为了能有效地利用无线电频谱,减少相互间的干扰,信号监测业务随之成为必要。调幅广播信号监测系统是用于实时监测短波调幅广播信号的调幅度、载波频率的专用系统。

图1为调幅广播信号质量监测系统的系统框图。本系统由数据采集模块、总线控制模块、数据处理模块、上位机通信模块组成。其工作方式为:输入信号通过线性数控增益放大器后由A/D转换器采样,采样后的数据由FPGA送入DSP进行数据处理,所得到的监测结果由FPGA通过PCI接口送入上位机。同时由DSP对采样所得信号大小进行监测,通过FPGA对线性数控增益放大器的增益进行调整,使其输出信号满足系统测量要求。

算法和数字处理软件

调幅广播信号的特点是载波频率相对稳定而调幅度实时变化,所以系统每监测一百次调幅度再监测一次载波频率同样可以达到监测信号的目的。系统所要监测的信号的带宽小于10kHz,频率范围为1.5MHz~30MHz。若对信号进行过采样,为保证测量精度则采样频率要达到240MHz,后续数据处理难度较大,所以系统选择对信号进行欠采样。采样点数为N=4096。

调幅信号调幅度的计算公式如下:

其中m为调幅度,A为包络上、下两正峰间的幅度,B为包络上、下两负峰间的幅度。

本系统中先用频域移相法求得A/D采样后信号的Hilbert变换,然后取绝对值即可得到AM信号的上包络。因为单音调幅信号的上、下包络关于零轴对称,所以只要得到上、下包络其中之一就能根据式(1)求得调幅度。

设输入信号为f(t),则由采样定理可知采样前信号的频谱F(w)和采样后信号的频谱FS(w)有如下关系:

设输入正弦信号为:

则采样后信号的频谱为:

 

根据上式可知,信号的频谱在w=wi-nW处有峰值。由下式可知只要计算出n值和通过傅里叶变换估计欠采样后信号的频率w,正弦信号的真实频率wS就可准确求出。

输入信号最高频率为30MHz,系统选取最小公倍数为60MHz的两个采样频率分别为fs1、 fs2(fs1=60/264MHz=0.228MHz、fs2=60/261MHz=0.230MHz)对信号进行采样,对采样后的信号作FFT变换,与fs1和fs2相对应的频率分别为f1=fs1×n1/N和f2=fs2×n2/N。由此可粗略的得到信号的载波频率为:

进而为了达到1Hz的测量精度,必须进行频谱细化。若要达到0.5Hz分辨率,则分析200Hz谱宽需要计算400点。在粗估计频率的前后 100Hz内进行频率细化分析,分别对f1和f2作n1和n2周围400点的DFT变换。变换后得到频谱F1和F2,分别求出其幅度最大值对应的位置 nF1和nF2,从而得到精估计的信号频率值和:

根据式(6)可以列出两组载波频率的矩阵:

最后根据式(8)中最接近的两个值fcn1和fcn2就可以计算出载波频率值为:


根据上述算法可得到DSP中数据处理软件的流程图(图2)。


FPGA逻辑设计

本系统中FPGA主要用来协调各个模块间的数据传输,分别为A/D采样数据到DSP的传输、DSP计算结果到PCI接口的传输以及数控增益放大器的增益控制。同时FPGA还为系统工作提供了必要的时钟、复位信号、控制信号(图3)。


器件选择

A/D转换器是整个监测系统的关键部件,它的性能往往直接影响整个监测系统的技术指标。当A/D有效位数大于12位时量化损失为 0.0055dB,其对测量精度的影响可忽略不计。系统选用的A/D转换器为ADI公司的AD9433。输入AD9433的信号幅度要控制在一定的范围内,否则会造成失真,甚至烧毁芯片,所以要在AD9433之前用运放对信号幅度进行调控。同时根据调幅广播信号幅度实时变化的特点,要求所选择的运放增益可变。基于上述要求系统选用ADI公司的线性数控增益放大器AD8320。

系统对信号采样点数为N=4096,算法采用Hilbert变换解调求调幅度和欠采样求载波频率,所以每计算100次调幅度和1次载波频率所需要的运算量大概为:


下载 (5.28 KB)

本系统选用ADI公司SHARC系列的ADSP-21262作为数据处理芯片。

根据ADSP-21262性能可估算出系统完成一次调幅度测量所需要的时间大概为800μs,完成一次载波频率测量所需要的时间大概为10ms,可以满足系统实时性要求。

在总线控制模块中,系统选用Altera公司Cyclone II系列中的EP2C8Q208C8 FPGA芯片。

PCI接口模块选用PLX公司的PCI总线控制芯片PC19054。

结语

本文介绍了一种基于DSP的调幅广播信号监测系统,采用了数字信号处理的方法,与模拟监测技术相比处理更加灵活、测量精度更高、并且大大提高了系统的可靠性。本系统已成功应用于实践,经过实践检查,载波频率测量精度达到1Hz,调幅度测量精度达到3%,测量效果满足实际需要。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭