当前位置:首页 > 嵌入式 > 嵌入式硬件

摘 要: 为了保证井口输油管道中原油的流动性,针对传统的电加热器和水套炉存在的热效率低、功耗大、不稳定及废气对环境造成污染等问题,提出了一套以太阳能集热器为主、热泵热水器为辅的加热系统。该系统采用温度采集卡实现10路温度信号及6路开关量信号的采集,利用三星的S3C2410 ARM控制器对太阳能集热器和热泵进行交替控制,从而实现储油罐原油的加热控制。触摸屏采用3.5英寸的TFT液晶屏,并将WINCE操作系统移植到ARM处理器,从而实现了良好的人机交互控制界面。
关键词: WINCE;温度采集卡;S3C2410;Visual Studio 2008;ARM

油田中的采油系统分布相对较为稀疏,油罐储存和传输过程中需要对油温进行加热,以避免因原油凝固而不能传送到中间站进行处理。由于每个井口的分布位置相对较远,因此需要对每个单独的油罐进行加温控制。目前所使用的加温装置大多是以伴生气为燃料的水套炉或者以电能为能源的电加热器等[1]。水套炉存在热效率低、能耗高、炉体易产生烧蚀损坏、维修维护成本高等弊端,而且,伴生气燃烧过程中所排放的废气对环境造成污染。电加热器存在耗电高、易停电、频繁扫管、造价高等弊端。本文提出了一套以太阳能集热器为主、热泵热水器为辅助热能提供装置、ARM为主要控制器的加热系统[2]。热泵与太阳能集热设备、蓄热机构相联接的系统方式, 不仅能够有效克服太阳能本身所具有的稀薄性和间歇性,而且可以充分利用太阳能,解决原油集输、储运全天候供热问题,达到节能和减少环境污染的目的, 具有很大的应用潜力[3]。
1 系统功能
油田单井的油罐太阳能加温控制系统主要通过ARM控制器、温度采集卡及触摸屏实现对太阳能油罐的加热和对执行机构的控制。油田单井的油罐太阳能加温控制器系统主要包括石油储油罐、太阳能集热场、热水箱、补水箱、空气源热泵、低热管、电加热器、电磁阀、10只温度传感器和温度控制系统。
系统主要功能为:在光照条件好时,主要由太阳能集热装置为油罐加热;在光照不足的条件下,利用热泵为油罐补充加热;当热泵出现故障时,利用电加热为油罐加热。智能化控制装置提高了太阳能集热器效率和热泵系统性能, 从而解决了原油集输、储、运全天候供热问题,同时也大大节省了电能的使用[4]。
2 系统总体设计
油田单井的油罐太阳能加温控制器主要由温度采集卡、ARM控制器、液位传感器、触摸屏和执行机构等组成。工作过程为温度采集卡实时对10路温度信号进行循环采集,采集到的信号通过信号处理电路转变为电压信号,再通过模拟开关选择相应的传输通道,通过AIN0输入口把数据发送到ARM处理器进行A/D转换,然后由ARM微处理器根据相应的条件对执行机构做出相应的判断,同时将采集到的温度值实时显示在触摸屏上。也可以通过触摸屏对系统的工作起始时间,循环泵的温差值等各个参数进行设置。系统总体设计结构如图1所示。

2.1 系统的硬件电路设计
油田单井的油罐太阳能加温控制器主要完成显示、存储、控制以及通信等功能。考虑到本系统对微控制器的要求较高,特别是处理器的运算速度要求较高,在处理过程中需要较多的存储空间及外扩接口,而传统的单片机已不能满足要求,因此本设计采用三星的S3C2410ARM作为微控制器。硬件设计包括:ARM的最小系统[5]、温度采集卡电路、触摸屏电路等模块电路的设计。系统控制器的原理框图如图2所示。

2.2 存储器接口硬件设计
S3C2410A在片内具有独立的SDRAM刷新控制逻辑,可方便地与SDRAM接口。油田油罐加温控制器终端采用了2片16位数据宽度的HY57V561620芯片并联构建成32位的SDRAM存储器系统,共有64 MB的SDRAM空间。S3C2410A处理器支持从NAND Flash启动,NAND Flash具有容量大、比NOR Flash价格低等特点。系统采用NAND Flash与SDRAM组合,可以获得非常高的性价比。该系统采用了一片型号为K9F1208UOM、容量为64 MB的NAND Flash芯片。NAND Flash中存放bootloader代码和WINCE操作系统的镜像文件。同时设置OM[1:0]=00,即处理器从NAND Flash启动。NAND Flash和处理器的接口框图如图3所示。

2.3 液晶屏接口电路的设计
S3C2410A自带 1个LCD控制器,支持STN和TFT带有触摸屏的液晶显示屏,本设计采用3.5英寸的TFT液晶屏。S3C2410A自带触摸接口电路,包括4个控制信号线(nYPON,YMON,nXPON,XMON)和模拟输入引脚AIN[7]、AIN[5],分别控制X坐标和Y坐标的转换。
2.4 温度采集卡的设计
自行设计的温度采集卡实现了多路信号的采集、预处理及传送功能。系统的采集点为10路热敏电阻,热电阻采用RTC公司的负阻温度传感器,实现10路温度的循环采集。在电路的结构设计上,采用惠更斯电桥进行传感器电压信号的采集。为了提高测量精度,为电桥提供电压的芯片选用TI公司的精密电压源芯片REF102,其输出参考电压为10 V,电压的波动为±2.5 mV,输出精度远远大于常用的10 V线性稳压模块,输出电流为10 mA,满足输出功率的要求,温漂系数为2.5 ppm/℃,有效地减少了由于环境温度变化而引起的测量误差。温度电桥电路采用ADI公司提供的仪器放大器AD620。采用该放大器,一方面由于其具有高输入阻抗,实现了采集电路和控制电路的阻抗隔离,提高了测量精度;另一方面其集成化的特点也减少了由于采用过多的外围器件而带给系统的测量误差,这里包括电阻的白噪声影响和器件的温漂影响。经过运算放大器以后,其输出电压的变化范围为0 V~3.3 V,满足ARM AD模块对输入电压的要求(0 V~3.3 V),并且电压的大小也在AD620的线性工作区范围内。由于采集节点为10路(RT1-RT10),而ARM自带8路10 bit ADC,其中AIN5、AIN7要用作触摸屏的输入,因此本系统设计采用TI公司提供的16路模拟开关MPC506进行循环采样。其模拟信号输入电压的范围是±15 V,功率耗散为7.5 mW,满足系统的设计要求。采集卡一路信号采集的电路图如图4所示。

3 软件设计
3.1 操作系统的移植
油田单井油罐太阳能加温控制器的触摸屏采用3.5英寸的TFT液晶屏,将WINCE操作系统移植到ARM处理器,基于WINCE开发用户界面,从而实现人机交互式控制与显示。信号处理平台采用ARM9核心的S3C2410处理器,因此,可以通过克隆SMDK2410的BSP来完成大部分的OAL层的移植工作。此外,还需要移植显示驱动程序、触摸屏驱动程序、GPIO驱动程序以及A/D采集驱动程序。在WINCE中,显示驱动程序、触摸屏驱动程序属于分层驱动程序。移植相关示例驱动程序的代码时,只需要对PDD层的代码进行修改。A/D采集驱动程序和GPIO驱动程序采用标准流接口驱动的方式实现,即实现ADC_Init、ADC_Deinit、ADC_Open、ADC_Close、ADC_Read、ADC_Write、ADC_Seek、ADC_IOControl、ADC_Power-
Up、ADC_PowerDown这几个流接口函数。
3.2 应用程序的开发
在WinCE下,应用程序开发是针对驱动和内核而言的。在WinCE下开发应用程序大致可分为3个步骤:(1)安装合适的SDK;(2)编写代码和调试;(3)发布应用程序。本设计选择采用Visual Studio 2008开发工具,应用程序采用MFC编程接口,用基于对话框的模型来开发。
因为基于ARM的油田单井油罐太阳能加温控制器需要对10路热敏电阻进行实时循环的采集,同时还需要通过触摸屏设置系统的工作参数,显示系统故障、事故报警、系统运行状态等信息;ARM控制器根据采集到的温度值和设置的工作参数对执行机构做出判断。因此,应用程序中使用了多线程方式来保证程序的实时、高效运行。在窗体主线程中建立了3个子线程:ADC采集子线程、触摸屏设置显示子线程和系统控制子线程。系统控制程序流程如图5所示。

4 系统测试实验与结果
4.1 实验平台的构建
油田单井的油罐太阳能加温控制器的测试平台如图6所示。测试平台由温度采集卡、ARM控制器、触摸屏和测试板组成。测试过程为:(1)分别定时调节测试板上的10路模拟电阻值,调节完电阻值后观察触摸屏的显示界面是否能实时正确地显示所采集到的温度值;(2)改变测试板的I/O输入按钮状态,观察系统是能否及时报警并在触摸屏上显示详细报警信息;(3)通过触摸屏改变系统的工作参数,观察ARM控制器是否能根据触摸屏设置的系统参数和采集到的温度值,对执行机构做出正确判断。

4.2 测试结果
测试结果表明,触摸屏能实时显示所采集到的温度值。在测试过程中调节测试板上的电阻值分别为65 k?赘、7.5 kΩ、1.6 kΩ,测试结果表明采集精度保证在±0.5 ℃;对于外界的I/O输入,控制器也能及时报警并在触摸屏上显示出详细的报警信息,如过流、过载、缺相、缺水、满水等;通过触摸屏设定系统的工作参数,ARM控制器能及时准确地根据系统所设定的参数,对执行机构做出正确的动作判断。
油田单井油罐太阳能加温控制器的设计实现了太阳能加热储油罐的自动化控制。该控制器终端采用ARM处理器作为核心运算,并移植了WINCE操作系统,实现了良好的人机交互式界面,从而完成了在光照充足的条件下利用太阳能集热场为油罐加热,在光照不足的条件下利用热泵为油罐加热。解决了原油集输、储运全天候供热问题,大大节省了电能。经测试,单井的月节电量为3×104 kW·h。整个系统稳定性好,数据传输可靠,无误码,罐出口原油温度保持在55 ℃-60 ℃,测量精度达到±0.5 ℃。自动控制器的设计充分利用了太阳能,符合我国的节能减排环保政策,具有很高的实用价值[6]。
参考文献
[1] 王学生,王如竹,吴静怡,等.太阳能加热输送原油系统 应用研究[J].油气储运,2004,23(7):41-451.
[2] 李向阳,莫鸿强,肖迳.太阳能热水器中辅助电热水装置控制器的开发[J].电子技术应用,2004,30(04):94-97.
[3] 王霞,李淑民,裴培,等.基于ADS8364的数据采集系统设计[J].电子技术与应用,2009(7).
[4] 张燕红,郑仲桥.基于单片机AT89C52的数据采集系统[J].化工自动化及仪表,2010,37(3):110-112.
[5] 罗健飞,吴仲城,沈春山,等.基于ARM和WinCE下的设备接口驱动设计与实现[J].自动化与仪表,2009(3).
[6] 冉春雨,刘颖超,王春清.可再生能源在国内外应用现状分析[J].电力需求管理,2009(3).

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭