ADSPTigerSHARC中利用查找表快速计算三角函数
扫描二维码
随时随地手机看文章
;;;;;; 摘要:DSP算法中,三角函数的计算是一种运算量比较大,占用时间比较长的运算。如果通过直接调用DSP生产商或者第三方提供的库函数进行运算,往往需要占用比较多的时钟周期。在实时性要求比较高的场合,调用库函数进行三角函数计算就不能够达到实时性的要求。在这种情况下,利用查找表的方法来得到三角函数的值就成为一种可行,并能获得很高实时性的计算方法。本文给出了一种在TS101中利用查找来实现三角函数计算的方法,并对这种算法的误差和运算量进行了分析,从结论可以看出,文中提出的通过查找表计算三角函数的方法有效而且运行效率比较高。
关键词:查找表;;;;;;;;Tiger;SHARC;TS101;DSP;;;;;;;;实时性
1.;;;;概述:
;;;;;; 我们知道,在三角函数的运算中,涉及到大量倒数和平方根的运算。TS101的ALU指令中,提供了很方便的求倒数指令RECIPS和求平方根倒数指令RSQRTS,在一个指令周期内,可以完成求一个浮点数的倒数或者平方根倒数的运算。但是,在TS101中,倒数和平方根倒数指令仅仅提供了8位浮点的近似值,特别在小数点后位数比较多的情况下,误差比较大。并且,在很多计算过程中,随着运算步骤的增加,其误差也不断扩大,最终将会导致运算的结果远远偏离正常的数值。如果需要提高倒数和平方根倒数的运算精度,就需要用到收敛算法,这样就大大增加了运算的周期数,使得运算量骤增。在需要大量三角函数运算的场合,这么大的运算量就显得很不合适,大大占用了系统的运行时间。在ADSP的集成开发环境Visual;DSP;3.5++中,生产商虽然提供了进行三角函数计算的库函数,并具可以得到很高的计算精度,但是它的运算周期却比较长,很多情况下并不能满足我们的要求。
;;;;ADSP;TS101中提供了专用的加法器和乘法器,使得高精度的乘加运算可以在一个周期内得以完成。如果我们可以利用乘加运算代替大运算量的求倒数和求平方根运算,那么程序运行中就可以大大降低程序的时间消耗。而且,三角函数具有一定的周期性,我们可以通过三角函数周期性的变换,将角度值变换到一个周期内,通过查表的方式来获得三角函数的数值。这种方式直接利用了三角函数的周期性,其误差大小决定于查找表的大小,也就是对一个周期内三角函数的数值进行采样的密度。在误差允许的情况下,可以以很高的运算速度得到三角函数的数值。 2.;;;;算法理论与DSP实现:
(1)DSP算法:正弦和余弦函数是按照2π为周期周期性变化的函数。对于;和;形式的函数,当我们知道x的数值以后,就可以根据浮点数x的小数部分的数值求得函数的数值,而整数部分可以作为周期循环的部分不予考虑。所以运算的重点在于如何将小数部分的数值转变为查表时候所对应的地址单元。我们取余弦函数;区间上的数值,在允许的计算精度范围内首先对其进行采样。因为余弦函数为偶函数,所以在整个自变量变化的范围内的三角函数运算都可以转变到;区间内进行。
;;;;;; 对于三角函数;的数值的计算,我们将其自变量x的取值区间以0为中心分为小于零和大于等于零两部分。对于小于零的区间,首先求出x的绝对值,然后减去0.5,将得到的结果用fix指令求整,再用float指令将其表示为浮点数,将x的绝对值与用float指令求得的数值相减就提取出了数据的小数部分。对于大于零的区间,我们不用求其绝对值就可以直接按照上面的步骤提取出其小数部分。对于正弦函数;,由于正弦函数是奇函数,情况就相对比较复杂一些。这时需要判断x的数值是大于零等于零还是小于零,如果在大于零的情况下,可以直接将小数部分提取出来,并对其进行查表得到对应的三角函数的数值,而在x的数值小于零的情况下,我们需要将在;区间内查表得到的数值再对其取负才可以得到相应的三角函数的数值。我们得到小数部分的数值以后,将小数部分的数值和采样的样本点数进行乘法运算,就可以得到查表所需要的相对地址。;查表实现的简单的汇编语言算法实现如下(未优化):