发展类脑计算和人工智能的挑战是什么?
扫描二维码
随时随地手机看文章
发展类脑计算和人工通用智能真正的挑既不是科学,也不是技术,而是我们的学科分布,目前的学科分布使得我们没有合适的人来做这方面的研究,而且脑科学和计算机科学一个主要是探索自然世界,后者更关注应用。这两个领域有不同的文化、语言,而且目标也不一样,所以多学科融合尤为关键。
清华大学类脑计算研究中心由7个院系组成,因为这个领域不仅仅是计算机和脑科学的融合,还有数学、物理、电子、微电子等的融合。
我们7个院系的老师在一起反复讨论,每周半天的时间,最后我们7年只做了一件事情,叫融合、融合再融合。
在这个过程当中,我们梳理了一下如何去发展人工通用智能,主要是有两条路线:第一,计算机主导的;第二,脑科学主导的。计算机主导的像机器学习,它在图象识别、语音理解、自然语言的处理方面,取得了辉煌的成绩,但它很难去处理不确定性的问题等。
脑科学神经形态计算,发展的也很快,但由于我们不理解脑的机制原理,极大地阻碍了它的发展,但是两条技术路线实际上互补,二者结合起来是目前我们认为最好的一种方法。
发展类脑科学实际上还有两条:1、基于计算机,用脑科学的基本原理来改变计算架构;2、我们用一个“类脑”这样简单又明了的词涵盖了这两个部分。