当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]进一步扩大先进低功耗 SRAM 产品阵营采用 110 纳米工艺技术实现高软错误免疫能力2013年9月24日,日本东京讯—全球领先的半导体及解决方案供应商瑞萨电子株式会社(TSE:

进一步扩大先进低功耗 SRAM 产品阵营采用 110 纳米工艺技术实现高软错误免疫能力

2013年9月24日,日本东京讯—全球领先的半导体及解决方案供应商瑞萨电子株式会社(TSE:6723),今日推出了 12 款新产品版本的旗舰 SRAM(静态随机存取存储器)产品, 这些产品属于RMLV0416E、RMLV0414E 及 RMLV0408E 系列先进低功耗 SRAM(先进LP SRAM)。新推出的存储器设备拥有高达 4 兆位(Mb)的密度,并采用极为精密的110 纳米(nm)线宽制造工艺。

即将上市的 SRAM 是高级 LPSRAM 的新系列,可提供和瑞萨电子现有150nm工艺的SRAM 产品完全相同的可靠性,包括消除软错误(注释 1)和闩锁效应(注释 2)。新产品的待机电流在 25℃ 时可保证不超过 2 微安(µA),这一低功耗工作特性使其适用于有备用电池供电设备的数据存储。

瑞萨电子的低功耗 SRAM 已被广泛应用于多个领域,其中包括工业、办公、通信、汽车及消费品等等。公司在 2012 年占据同类产品市场份额第一位(注释 3)。近期,随着用户系统性能和功能的逐步提高,SRAM 已成为了提高整体系统可靠性的关键因素之一。特别是用于存储系统程序和计费数据等重要信息的 SRAM,其必须能够保证极高水平的可靠性,因此,如何减少因阿尔法辐射和宇宙中子辐射造成的软错误成为了此类产品的首要关注点。

瑞萨电子的先进 LP SRAM 采用了独特的结构,其存储单元内的每个存储节点(注释 4)均拥有附加的物理电容(注释 5),因此具有极高的抗软错误能力。通常情况下,出现软错误后的处理方式是在 SRAM 或用户系统中加入内部纠错(ECC)电路。但此方法具有一定的局限性, ECC可能无法应对多个位元的错误。相比之下,先进的 LP SRAM 采用结构化措施从根本上预防软错误出现。根据对目前量产的 150纳米先进LP SRAM 中系统软错误的评估结果,在实际环境下,此类产品堪称不存在软错误。

此外,SRAM 单元负载晶体管(P 沟道)为多晶硅 TFT(注释 6),堆叠于硅衬底的 N 沟道 MOS 晶体管之上。因此,在硅衬底下方仅形成 N 沟道晶体管。这样可确保存储区内不形成寄生晶闸管,并从理论上杜绝闩锁效应。

这些特性使得先进 LP SRAM 相比使用传统存储单元结构的全 CMOS 型(注释 7)产品可实现更高水平的可靠性。针对工厂自动化设备、测量设备、智能电网设备和运输系统等需要严格保证高水平可靠性的应用环境,先进LP SRAM 可实现更优秀的性能和可靠性。

此外,先进LP SRAM结合了SRAM多晶硅TFT堆叠技术和堆叠电容技术,可有效减少存储单元体积。例如,110纳米的先进LP SRAM的单元体积相当于使用65纳米工艺制造的全CMOS SRAM。

瑞萨电子还计划进一步扩充 110纳米SRAM的产品阵营,加入8 Mb和64 Mb的110纳米产品。

有关新 SRAM 设备的主要规格,请参阅单独的说明页。

(注释 1)软错误:

指在硅衬底被外部阿尔法辐射或中子辐射击中时生成电荷,造成存储数据丢失的现象。相比可重现的半导体元件物理故障等硬错误,软错误具有不可重现性,仅需让系统重写数据即可修复。一般来说,制造工艺越精密,软错误的出现率会越高。

(注释 2)闩锁效应:

指 CMOS 晶体管的电位阱、硅衬底、P型扩散层和N型扩散层所形成的NPN或PNP结构(寄生双极性晶体管)因电源或输入针脚过电压而进入开启状态,从而造成大电流在电源和地面之间流动的现象。

(注释 3)资料来源: 瑞萨电子。

(注释 4)存储节点:

每个存储单元内以“高”或“低”电势形式存储信息位的触发器电路节点。

(注释 5)堆叠电容:

具有两个由多晶硅或金属构成的电极的电容器。此类电容器构成于硅衬底上 MOS 晶体管的上层,可有效减少存储单元的面积。

(注释 6)薄膜晶体管(TFT):

使用薄膜多晶硅构成的晶体管。此元件可用作 SRAM 负载晶体管,构成于硅衬底上 MOS 晶体管的最上层,可有效减少存储单元的面积。

(注释 7)全 CMOS 型:

由同一硅衬底表面上共计六个P通道MOS晶体管和N通道MOS晶体管所构成的SRAM存储单元结构。其表面积较大,存在闩锁风险。

定价和供货

瑞萨电子新款 SRAM 的样品将于 2013 年 11 月发布,样品定价为 7 美元。大规模生产预计将于2013年12月启动。(定价和产品提供情况可能发生变化,恕不另行通知。)

(备注)所有注册商标或商标均为各自所有人的财产。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭