数据表示基础:计算机补码运算原理
扫描二维码
随时随地手机看文章
首先我们来看为什么要使用补码运算法:
因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.
于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码: 计算十进制的表达式: 1-1=0
1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2 。如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数. 为了解决原码做减法的问题, 出现了反码: 计算十进制的表达式: 1-1=0 表达式1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0
发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0. 于是补码的出现, 解决了0的符号以及两个编码的问题: 表达式1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原 。这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:
接下来我们来看补码运算原理:
在计算机里,如果我们要计算5-3的值,我们既可以用5减去3,也可以用5加上13。这是为什么呢?
这就像我们的钟表,它从1点走到12点之后,又回到了1点。我们的计算机也是,从0走到15之后,再往下走就又回到了0,就像我们转了一个圈一样。我们从5这个位置往回退3个格,就完成了5-3这个计算。我们也可以从5这个位置往前走,一直走到15,这时我们走了10个格,然后我们继续往前走,走到0,然后到1,然后就走到了2。这样,我们往前走了13个格之后,也到了2这个位置。
所以说,在我们这个计算机中,减3和加13是一样的。而3+13=16,我们说在模16的系统下,3和13是互补的。
这样,我们计算5-3就可以换成5+13。3的二进制表示为0011,5的二进制表示为0101。这样,0101-0011就可以表示为0101+(-0011)。
我们在计算机中都是把负数用其补码表示,-0011的补码就是10000-0011(即16-3,也就是13)。10000-0011=1+1111-0011=1+(1111-0011)=1+1100=1101。
我们总说补码是“按位取反再加一”,看了上面这个式子相信大家就会明白了,其实就是把10000-0011换成了1111-0011再加1的形式。然后,0101-0011就换成了0101+1101,它们计算出来的结果为10010。由于我们的计算机只有四个bit,所以结果为0010。即,在模16的计算机中,5-3=5+13=2。