FPGA的静态功耗分析与降低技术(二)
扫描二维码
随时随地手机看文章
3 FPGA结构中基本单元漏电流分析
3.1 晶体管的漏电流原理
晶体管的漏电流主要包括源漏之间的亚阈值漏电流(Isub)和栅漏电流(Igate),但随着导电沟道的缩短,也带来了其他的漏电流。图5所示为在短沟道下所有的漏电流。
I1为pn结的反偏漏电流。
I2为源漏之间的亚阈值漏电流。它是在栅压低于阈值电压Vth时,在亚阈值区域有弱的反型而形成的电流。
I3为穿过栅氧化层形成的栅电流。它是由于栅氧化层厚度越来越薄,电子穿过栅氧化层产生的电流。
I4、I5分别为由于热载流子效应形成的从漏端到栅的电流和从漏端到衬底的电流。
I6为源漏之间的穿通电流,它是由于在短沟道器件下源-衬底之间的耗尽层与漏-衬底之间的耗尽层越来越靠近,当这两个耗尽层结合,发生穿通效应而产生的电流。
3.2 FPGA中基本单元漏电流分析
在FPGA中被用来做静态漏电流模型的基本单元有:反向器、多路选择器、SRAM单元、LUT单元、布线开关。反向器被设计为具有相同的上升、下降时序, 以及尽可能小的延迟和面积开销。所有的多路选择器是用面积最小的晶体管来实现,SRAM单元也是用面积最小的晶体管来实现,布线开关的晶体管在面积和延迟 方面做了平衡。所有基本单元中的NMOS和PMOS都被用来考虑亚阈值漏电流,但是仅仅NMOS被用来考虑栅漏电流,因为PMOS的栅漏电流要远远小于 NMOS.当NMOS的栅端为高电平时,即有电流从栅端流向沟道,如图6所示。
(a)反向器:反向器的亚阈值漏电流在输入分别为“0”和“1”两个状态时都进行了建模,如图7所示。当反向器的栅为“0”时,只有亚阈值漏电流通过反向 器的NMOS管,PMOS管的栅漏电流被忽略。当反向器的栅为“1”时为栅漏电流通过NMOS,亚阈值漏电流通过PMOS管。
(b)多路选择器:在FPGA中,多路选择器是通过NMOS传输管结构来实现的。多路选择器中的漏电流非常依靠输入的状态。图8描述了一个4选1多路选择器的结构,当选择信号为(0,0)和输入向量为(0010)时就存在亚阈值漏电流和栅漏电流,仅仅一个Q3传输管有亚阈值漏电流,其他三个传输管Q2、 Q4、Q6有栅漏电流。当保持选择信号不变,输入向量变化到(0110)时,就会有三个传输管Q1、Q3、Q5有亚阈值漏电流,两个传输管Q1、Q6有栅 漏电流。