当前位置:首页 > 嵌入式 > 嵌入式教程

  电厂炉膛安全给粉系统
——SGS技术方案书

目  录
第一章 概述
1、电厂给粉变频调速系统的缺陷
2、主要应对措施
3、直流支撑技术
4、使用瓶颈
第二章设计依据
第三章 SIS炉膛安全给粉系统组成
1、SIS系统组成
2、直流电源子系统的原理
3、直流电源子系统主要设备
4、炉膛安全联锁子系统(SIS)
4.1 MDS-104工业级三相异步电机保护单元
4.1.1功能特点
4.1.2 交流输入
4.1.3欠电压或过电压保护
4.1.4 MDS-104的软件设置
4.2 AB LOGIX顺序控制器
4.3 执行单元-ABB直流断路器和直流接触器
5、主站及人机界面监控软件
第四章 系统工作模式
第五章 系统的控制逻辑
第六章 系统安全性
第七章 系统特点
第八章 系统配置
1、 电厂提供的现场条件:
2、安全给粉系统的主要配置:
3、系统的环境要求:
4、系统指标:



第一章 概述

据统计自1980年以来,至少有30台锅炉发生炉膛放炮事故,以致水冷壁焊缝开裂,刚性梁弯曲变形,顶棚被掀起,烟道膨胀节开裂等设备损伤屡屡发生。
究其原因:
①设计上缺乏可靠的灭火保护和可靠的联锁、报警、跳闸装置;
②炉膛刚性梁抗爆能力低;
③运行人员处理燃烧不稳或熄火时方法不对,错误采用“爆燃法”抢救,导致灭火放炮;
④燃料质量下降、负荷调节失当、给粉装置及控制机构突然失灵等。
防止锅炉灭火放炮被列入1992年能源部颁《二十项反措》之五,2001年国家电力公司又颁发了《二十五项反措》第六章,包括炉膛安全监控系统(FSSS)在内的灭火保护装置在许多电厂推广使用。
如今, FSSS已经成为火电厂的标准配置系统,在炉膛安全保护上起了关键的作用。
部颁二十项重点反措之五,称为防止锅炉灭火放炮事故。《二十五项反措》第六章的提法是防止锅炉炉膛爆炸事故,因为炉膛发生爆炸而致炉膛损坏不仅发生在运行中灭火时,检修动火点燃聚集的可燃物及点火时吹扫不够同样会发生爆炸而导致炉膛损坏。
从引起锅炉炉膛爆炸的机理分析,当只有以下3个条件同时存在时才有可能发生爆炸。
1)锅炉炉膛内有一定浓度的燃料和空气积存。
2)积存的燃料和混合物具有爆炸性。
3)具有足够的点火能源。
常见炉膛中造成爆炸条件的情况是:
①运行中灭火,进入炉膛的燃料没有切,经过一段时间聚集的可燃物达至爆炸浓度并点燃;
②一个或几个燃烧器火焰熄灭,而其余燃烧器仍正常燃烧。从未点燃的燃烧器进入燃料造成可燃物聚集;
③燃料漏入停用中的炉膛造成可燃物聚集;
④燃料或空气瞬时中断又恢复,造成可燃物聚集。
可燃物聚集后引燃造成的炉膛压力升高超过炉膛承压设计强度,以致发生损坏,称为炉膛放炮或炉膛爆炸。不发生损坏的俗称“反正”或“打枪”。 部颁二十项重点反措引入以下反事故措施:
①一旦全炉灭火,应立即切断进入锅炉的全部燃料,包括给煤、给粉和点火用油、气等。即所谓主燃料切断(MFT);
②锅炉点火前必须通风,排除炉膛、烟风道及其他通道中的可燃物聚集。通风时必须将烟风挡板及调风器打开到一定的位置,风量应大于满负荷风量的25%,时间不少于5min,以保证换气量大于全部容积的5倍(德国TRD规定是3倍);
③点火时要维持吹扫风量;一个燃烧器投运10s内(不包括投煤及煤粉达到燃烧器所需的延滞时间)点不着,就应切断该燃烧器的燃烧。
《二十五项反措》防止锅炉炉膛爆炸事故的主要措施如下:
1)为防止锅炉灭火及燃烧恶化,应加强煤质管理和燃烧调整,稳定燃烧,尤其是在低负荷运行时更为重要。
2)为防止燃料进入停用的炉膛,应加强锅炉点火及停炉运行操作的监督。
3)保持锅炉制粉系统、烟风系统正常运行是保证锅炉燃烧稳定的重要因素。
4)锅炉一旦灭火,应立即切断全部燃料;严禁投油稳燃或采用爆燃法恢复燃烧。
5)锅炉每次点火前,必须按规定进行通风吹扫。
6)锅炉炉膛结渣除影响锅炉受热面安全运行及经济性外,往往由于锅炉在掉渣的动态过程中,引起炉膛负压波动或灭火检测误判等因素而导致灭火保护动作,造成锅炉灭火。因此,除应加强燃烧调整和防止结渣外,还应保持吹灰器正常运行尤为重要。
7)加强锅炉灭火保护装置的维护与管理。
这些措施解决了常见炉膛中造成爆炸条件中的三个:
①运行中灭火,进入炉膛的燃料没有切,经过一段时间聚集的可燃物达至爆炸浓度并点燃;
②一个或几个燃烧器火焰熄灭,而其余燃烧器仍正常燃烧。从未点燃的燃烧器进入燃料造成可燃物聚集;
③燃料漏入停用中的炉膛造成可燃物聚集;
但是,造成爆炸条件的④燃料或空气瞬时中断又恢复,造成可燃物聚集和反事故措施①一旦全炉灭火,应立即切断进入锅炉的全部燃料,包括给煤、给粉和点火用油、气等。即所谓主燃料切断(MFT)逐渐成为现在电厂运行中的一个矛盾。
不少电厂通过FSSS给粉机全停逻辑延时来处理这个矛盾,这必然带来炉膛在燃料中断时的炉膛熄火,再恢复时爆燃法点炉。
但是,燃料中断的次数(如电网晃电时一般为两次)决定了炉膛给粉量的多少,也决定了爆燃的次数和强度。当中断次数超过一次,而每次给粉量不足爆燃浓度,必然造成爆燃的强度增加,引起爆炉。所以,延时,带来FSSS安全级别降低使用,存在爆炉隐患;不延时,因为给粉跳闸引起停炉,给生产带来巨大经济损失。
这种新的矛盾主要是因为电厂给粉变频调速系统的缺陷引起的。
1、电厂给粉变频调速系统的缺陷
目前,多数电厂的给粉系统使用的变频调速系统,通过DCS或操作台输出4~20mA信号控制变频器的转速来实现给粉调节。变频器的起、停、故障和1C/2C电源等信号再返送给FSSS,FSSS通过这些信号来判断给粉全停逻辑,并引发MFT动作。
给粉调速系统的配电柜,多采用1C/2C分别供电、3C备自投切换方式,当有MFT动作时,采用大联锁切除给粉变频1C/2C电源,停止供粉。这种给粉调速系统最大的问题就是抗晃电能力差。
1)控制电路抗晃电能力差。这种给粉变频调速系统的成套比较陈旧,特别是靠操作台来控制调速的系统,控制电路都是设计安装在变频器柜内,当厂用电晃电时,控制电路失电,无法达到调速控制目的。有些DCS的信号输入需要电压-电流信号转换,这种转换模块也成套在变频柜内,当电网晃电时,这些信号也一样无法送达DCS。
2)变频器本身抗晃电能力差。当厂用电瞬间跌落或备自投切换时,变频器会欠压保护,当电压恢复时,变频重启动。这是变频器设计原理决定的,所有厂家的变频器都存在这种问题。
3)1C/2C接触器抗晃电能力差,有很多电厂存在晃电时接触器先跳闸的问题,但这是表面问题,即使接触器不跳闸,变频器也会因为瞬间失电跳闸,给粉系统一样无法正常工作。
2、主要应对措施
从根源上杜绝和制止晃电基本上是无法实现的,解决这一问题目前主要的应对措施有:
1.FSSS的给粉机全停逻辑延时(2~5S),给粉机变频器设置快速重启动,等待电网恢复后给粉机变频器重启动,这既违反了电厂管理规程,又不能从根本上消除炉膛在晃电时的安全隐患。延时短,不可避免停炉;延时长,有更严重的事故隐患,延时签字人员还要为事故埋单。这种因为延时引起的爆炉事故也在很多电厂发生过。
2.更换给粉机变频器。如ABpowerflex70s系列最大失电工作时间可以做140ms但也躲不过备自投切换的1.8S。另外原给粉变频调速系统的控制电路在晃电时仍无法正常工作。
3.交流在线UPS。电厂的其他自动控制系统无一例外的配有220VUPS。但给粉调速系统为三相感性负载和单相阻性负载并存,因UPS容量、转换效率低、保护级别高、投资成本高等原因,也不适用于电厂给粉系统。
3、直流支撑技术
结合变频器原理和工作方式,直流支撑方式是解决变频器晃电跳闸的最好办法。
1、变频器的雏形是直流变频器,交流变频器只是在直流变频器的前端加上了整流器。随着直流支撑技术的发展和开关电源技术的发展,变频器的控制电源(DC/DC)和主回路电源都来自于变频器内部的直流母线。新型变频器都有直流母线端子。
2、直流支撑技术已经非常成熟。该技术从美国引进,最早做为AB变频器的特殊行业应用方案。随着变频器的技术发展,直流支撑解决变频器的低压跳闸,已在其他安全级别要求不高的行业有成熟的应用。如:江苏的美国醋纤(南通)公司,在1996年就使用了直流支撑技术解决变频器的低压跳闸。
4、使用瓶颈
火电厂要使用这种技术的瓶颈在哪儿?
1、安全级别高。火电厂锅炉控制系统属于SIL3级,相当于AK5级。
2、火电厂使用直流电源的关键是既要适时供电,又要紧要关头断电,且断的可靠性要求更高。
3、安全给粉系统SIS部分要和FSSS联动,要进行FSSS的逻辑运算,厂商要熟悉电厂控制系统,要有电厂的现场经验,这是直流电源厂家不能做到的。
从系统安全级别入手,从断的可靠性入手我们专为热电厂提供安全给粉系统彻底解决您的后顾之忧。

第二章设计依据

[SHB-206-1999] 石油化工紧急停车及安全联锁系统设计导则
[DLGJ116-93]火力发电厂锅炉炉膛安全监视系统设计技术规定
GB/T 13337.1-1991 固定型防酸隔爆式铅酸蓄电池订货技术条件
DL/T 5044—1995 火力发电厂、变电所直流系统设计技术规定
DL/T 637—1997 阀控式密封铅酸蓄电池订货技术条件
DL/T 459—2000 电力系统直流电源柜订货技术条件
DL/T 724—2000 电力系统蓄电池直流电源装置运行与维护技术规程
DL/T 5120—2000 小型电力工程直流系统设计规程
DL/T 781—2001 电力用高频开关整流模块
GB17478-1998 低压直流电源设备的输出性能特性和安全要求
JB/T8948-1999 电控设备用低压直流电源
B4208-1993 外壳保护等级(IP代码)
GB4026-1992 设备接线端子和规定电线端鉴别标志以及、文字和数字系统
一般应用原则
GB50150-91 电气装置安装工程电气设备交接试验
GB50168-92 电气装置安装工程电气电缆线路施工及验收
GB50172-92 电气装置安装工程蓄电池施工及验收规范
GB50254-92 电气装置安装工程低压电器施工及验收
GB50171-92 电气装置安装工程盘、柜及二次回路结线施工及验收规范


第三章 SIS炉膛安全给粉系统组成

1、SIS系统组成
1、直流电源子系统
2、炉膛安全联锁子系统 (Safety Interlocking System )
3、主站监控软件

2、直流电源子系统的原理
1)、单台电机工作原理图:(图略)
系统由电池组、充电器、监测单元和SIS执行单元等组成

针对电厂的实际情况,我们决定采用多台电机工作模式
2)、下图是多台电机的工作模式图(图略)
多台电机工作模式:
M1,M2,M3同时设计于同一控制系统中为低压电机群的工作模式;
3、直流电源子系统主要设备
Ø蓄电池组
蓄电池采用免维护阀控式全密封铅酸电池。
Ø充电器
充电器的功率逆变管采用进口快速IGBT,其余元件采用进口工业等级器件,生产工艺严格完整,保证机器的可靠性和稳定性。输出电压和电流均可连续调节。具有强大的保护功能(输入过流、过压、欠压保护;输出短路,过流,过压保护;整机过热保护)。模块内取消了所有电位器,基准校正和控制全部采用12位D/A转换,精度高,参数性能稳定,调节方便。
充电模块采用可带点插拔技术,输出采用隔离设计。模块工作频率高,近300KHZ,体积小,抗干扰能力强。内置E2ROM,通过人机界面设置的参数自动保存到充电模块,掉电不丢数据。
ØSIS执行单元
执行单元由断路器和接触器冗余组成,控制关系为断路器锁定接触器,能准确地执行直流电源子系统的投入撤出转换。
Ø监测单元
用监测单元和人机操作界面组成监控系统,具有充电模块输出电压设定,充电电流限值设定,运行参数显示,故障报警存储,SOE事件记录以及蓄电池状态监测和直流回路状态监测,并可通过485总线和主站通讯。

监测单元结构图
4、炉膛安全联锁子系统(SIS)
SIS是安全给粉系统(SGS)的主控系统,是FSSS的联锁控制部分。负责监测各种交直流电源信号、保护动作信号,控制安全给粉系统直流电源的备份、投运和退出过程。每一回路都由检测、控制和执行单元三部分组成。采用工业级三相异步电机保护模块MDS-1做检测单元,保证系统的可用度。采用通过美国SIL3认证的AB LOGIX顺序控制器做为每台炉的主控制单元。
采用ABB S2断路器和直流接触器做单一直流回路的冗余执行单元保证系统的可靠性。
4.1 MDS-104工业级三相异步电机保护单元
4.1.1功能特点
三表法测量准确测量三相交流电压、电流、有功、无功、频率、功率因数、零序电流等电参量,可以测量变频器输出。
具有3路独立的开关量输出,可以作为遥控、跳闸或者告警
6路开关量输入,同时可以作为脉冲量输入
2路直流采样,可以接各种变送器
两路通信接口,支持MODBUS规约
FFT算法,可计算1-8次谐波
三相异步电动机的反时限过负荷(热过载)保护、不平衡(负序过流)保护、启动时间过长保护、堵转保护、接地(零序过流)保护、欠电压保护、过电压保护
三相电动机转子断条、轴承损坏、绝缘监测等故障诊断功能
4.1.2 交流输入
交流输入包括A、B、C三相电压和电流。电流是直接把线穿入小型电流互感器的圆孔。电压则采用6个各端子。分别为UA,UA1;UB,UB1;UC,UC1;其中UA,UA1为A相输入;UB,UB1为B相输入;UC,UC1为C相输入。每相间相互独立。
这样设计的目的是为了用户可以选择不同的安装方式和测量方法。如果用户选择角型接法则 UA---UC1 接A相 UB---UA1 接 B相 UC---UB1 接C相。如果用户选择星型接法则UA1---UB1—UC1接N线。每路可以进行单独测量,用户还可以根据需要选择。
输入的交流电压信号通过小型的PT(电压互感器),变换为交流0.5V的信号,经过滤波处理,滤除干扰信号,然后进行电平平移,使得原来的交流信号,叠加1/2的VREF,直接送到A/D转换,进行采样。
输入的电流信号,通过导线穿入小CT(电流互感器),CT的输出接一个精密电阻,变换成电压信号,经过滤波处理,滤除干扰信号,然后进行电平平移,使得原来的交流信号,叠加1/2的VREF,直接送到A/D转换,进行采样。
采样好的信号存入单片机的RAM中供软件处理。在软件中,我们每个周波采样16个点,根据采样定理,可以计算出输入信号的8次谐波。但是在应用中对奇次谐波更为关心。在数字信号处理中,由于电网的频率是在变化的,如果采样频率不是电网频率的整数倍,就会有所谓的频谱泄漏问题,详细内容请参考有关书籍。在该问题上我们采用了我们的提出软件跟踪算法,效果非常优异。
对于6路输入信号,进行FFT变换,得出各次谐波的幅值和相角,并且计算零序电流和负序电流。计算的方法和FFT变换请参考有关数字信号处理的书籍。
计算的结果存入RAM中,供通信程序、保护程序等其他程序使用。
4.1.3欠电压或过电压保护
系统电压太低会引起电动机过电流甚至堵转,烧毁电机。有时为了保证重要电动机的自启动,有时也使用欠电压保护。
系统过电压一般对电动机没有太多的影响,但是如果过压范围过大,会导致电动机的励磁电流急剧增加,而且有大量的三次谐波。在一些特殊的场合,会使用过电压保护。
定值包括3项内容:动作的继电器、过电压或欠电压定值、过电压或欠电压的整定时间。整定时间的单位为0.1S,电压的单位为V,最小分辨率为0.1V。
欠电压保护原理
过电压保护原理

本系统的设计为保护动作信号在整定时间到达时,送给SIS的中央控制单元处理,操作执行单元,控制各直流回路的备份、投运和退出。

4.2 AB LOGIX顺序控制器

MicroLogix1200是处理器、电源、嵌入式输入输出点的集成。它具有24点和40点两种规格,可满足许多应用场合。
MicroLogix1200采用模块化,无机架结构,可降低成本,减少备件。I/O扩展模块提供了更大的应用灵活性。
存储器模块可用于用户程序的上载、下载和传送。实时时钟RTC可用于定时控制等。
操作系统可闪速升级,无需更换硬件。用户可通过Web网络下载控制器的最新的固件程序,来升级控制器。
MicroLogix1200还使用编程软件RSLogix500和通用的指令集,与MicroLogix1000、MicroLogix1500以及SLC系列控制器兼容。
特性:
·通过Micro Logix 1200扩展模块来扩展高性能I/O,每个Micro Logix 1200 可 最多扩展6个模块(决定于电源估算)。
·高级的通信选择,从对等通信到SCADA/RTU网络。
·6K用户存储器(4K程序、2K数据)。
·数据文件下载保护,可存储关键的用户数据,防止出错。
·实时时钟和存储器模块。
·32位带符号的整数的数学运算。
·内置PID功能。
·20K高速计数器,具有8种工作模式,当计数器技术达到预置的上限或下限时,可控制高速计数器的输出。
·高速处理时,有4路中断输入。
·4路锁存输入,在程序普通扫描时,可捕获毫秒脉冲的输入。
·控制器内置2个模拟量微调电位器,转3/4圈可在0-250之间调节。
·对于40点的控制器,其端子块是可拆卸的,允许用户预先接好线,节省安装时间。
·可拆卸的I/O标签,可写字记录现场设备的号码,以便减少系统的维护和维修时间。
·防手指接触的接线端子块,符合全球安全标准。

4.3 执行单元-ABB直流断路器和直流接触器
根据各回路容量配置不同型号,冗余执行单元保障线路分断能力。
SOMAX S的基本的用途和特点:
ISOMAX S系列塑壳断路器性能优异,外形结构紧凑、通用性强、使用方法简便,设计简单、合理、而且质量可靠。此新型断路器更配有一个改进的分断系统,获多项工业专利。
特别值得注意的是用于制造ISOMAX S系列塑壳断路器的材料,是按现代环保要求可回用的,ISOMAX S系列塑壳断路器更以其优异质量及引入注目的设计获得了欧洲最佳工业设计奖。
采用ISOMAX S系列塑壳断路器是电力生产和配电系统的理想方案,它能确保所有电力用户的安全性和可靠性,它特别适用于需保护和配合自动化控制的设备,ISOMAX S系列产品能最大范围地满足额定电流和故障电流的要求,并能达到与下级壳断路器的极限分断容量选择保护的要求。
由于本系列产品的通用性和匹配性强,它能配置在任何配电设备中:
一次配电(功力中心)
电动机控制(MCC)
二次配电(配电盘)
用户(DIN安装导轨的配电柜)
ISOMAX S系列塑壳断路器包括七种基本规格的产品(S1-S7),从10A到1600A额定不间断电流和高达100KA 额定极限短路断容量,各种规格均具有下列额定分断容量等级:
B-基本分断容量
N-正常分断容量
S-标准分断容量
H-高分断容量
L-限流型

第四章 系统工作模式

本系统有三种工作模式:
1)、正常工作模式:给粉机变频器由交流母线供电;系统处于热备用状态,电池组由充电整流器充电。
2)、电网晃电或备自投切换时的工作模式
当电网电压下降,造成变频器直流母线电压低于直流电源母线电压时,系统转换成由安全给粉系统的直流电源向给粉机变频器的直流母线供电,给粉机变频器工作保持正常
3)、检修工作模式:
个别变频器检修, 直流端由断路器、直流接触器和隔离器件隔离 ,该直流回路不再参与电网晃电时的投运。

第五章 系统的控制逻辑

逻辑控制说明:
1. 变频器启动、停止控制逻辑
根据变频器的原理,变频器在交流供电或直流供电正常情况下在接受到启动接点指令后,即可投入运行。在变频器正常运行后有一反映变频器运行状态的接点信号闭合。变频器运行调速指令由DCS 或PLC 送来的4-20mA 模拟信号实现。SIS系统只需变频器或FSSS提供变频器运行状态信号,对变频器控制方式和性能无任何改变。

2.安全给粉系统的逻辑图
安全给粉系统的逻辑判断由SIS的中央控制单元完成,并控制直流电源子系统的执行单元来完成安全给粉系统的备份、投运和退出过程。
a. 输入逻辑条件有:变频器运行状态接点信号, FSSS保护动作信号, 排粉机的的工作状态信号和欠压保护动作信号等。
b. 输出逻辑条件有:断路器、直流接触器的闭合断开信号
c. 变频器交流母线电压正常条件下直流支撑系统投入过程
变频器电源端送入正常电压,变频器受电,内部CPU准备运行;控制设备、DCS 或PLC 或控制继电器送来启动运行指令。电机按模拟控制4-20mA 电流决定变频器拖动电机的运行转速;等到系统正常运行后变频器状态接点闭合。
安全给粉系统的SIS中央控制单元接受到变频器运行状态同时排粉机运行正常、FSSS未给出保护动作信号、且没有欠压保护动作信号,SIS中央控制单元经过软件运算,满足系统备份条件时,向断路器、直流接触器发出合闸指令,这时各直流回路处于备份状态。
d. 变频器电源晃电时其直流母线电压立刻下降;直流电源系统在变频器母线电压降到安全给粉系统直流电源母线电压时,开始对变频器供电,电机在这一过程中仍然保持不间断运行。
e. 在电网晃电时间达到安全给粉系统设定的工作时间时或SIS中央控制单元接受到变频器运行状态变化或排粉机运行状态变化或FSSS给出MFT动作信号,经过运算满足退出条件时,向断路器、直流接触器发出断开指令,这时各直流回路处于退出状态。
退出后,SIS中央控制单元在检测到满足备份条件时,发出控制信号,系统又恢复到备份状态。
f. 根据用户工艺条件,安全给粉系统直流电源具体工作时间可在调试时在人机界面上确定,单位为0.1S。

3、系统接线图(图略)

4、接制部分接线示意图(图略)

第六章 系统安全性

IEC安全要求等级分为4级,安全性能由低到高为SIL1、SIL2、SIL3、SIL4。
美国对SIL4只承认其存在,标准中不包括在SIL4要求下如何实施安全系统的内容。
德国DIN V 19250及DIN V VDE0804对安全要求等级(Safety Requirement Classes)分为8级,安全要求从低到高为AK1~AK8,对应各标准的安全等级对比如表所示。

大多数使用安全系统的工业应用场合属于AK4~AK6级,其中一般锅炉、加热炉为AK4级,石化、化工为AK5级。
由图1可知,安全系统应分如下几类:

满足安全要求等级AK1~AK4的Z-1、
满足安全要求等级AK1~AK5的Z-2、
满足安全要求等级AK1~AK6的Z-3、
安全要求等级AK7~AK8的需要特殊考虑的共5类。
如监视设备的功能由一般控制系统(如DCS)实现,则安全控制系统分为4类。

Z-1类的安全系统可用性“一般”,一个中央CPU模块通过单总线与I/O模块相连,它与普通PLC不同之处为通过中央CPU的自我测试以及采用可测试I/O模块、失效时输出保证安全状态等满足系统安全要求。
Z-2类的安全系统可用性“较高”,中央CPU模块冗余,其他与Z-1相同,这样允许一个CPU模块出故障,另一个CPU模块维持正常工作,这样可以在AK5级安全要求等级以下的场合,维持72h之内。
Z-3类的安全系统可用性“很高”,结构为全冗余,即CPU模块、总线、I/O模块均双重化,在AK6级安全要求等级的场合,允许单通道操作时间不超过1h,即在此期间内将出故障的模块更换掉,即可保证生产不中断。
只有能满足上述要求的经过安全论证的PLC系统,才能作为安全系统使用。
本系统的安全行保障:
直流电源子系统一次线路有完善的保护元件,二次线路有完善的整流控制器、电池检测器和分路检测器。
SIS子系统采用工业级三相异步电机保护模块MDS-104做检测单元,保证系统的可用度;采用通过美国SIL3认证的AB LOGIX顺序控制器做为控制单元,采用ABB断路器和直流接触器做单一直流回路的冗余执行单元,保证系统的可靠性。

第七章 系统特点

直流电源做为变频器的后备电源,充分利用了变频器的结构特点,与交流UPS供电相比,减少了交直流变换环节和蓄电池容量,提高效率,减少电气保护环节,减少投资,且有很多其他行业的应用案例。
巧妙通过压差抑制蓄电池放电,取消了原方案中的静态开关导通模块(易损器件),简化控制电路和一次线路,使导通成为真正的零切换,又杜绝了因为导通模块故障引起的给粉不平衡,避免了因为导通模块阀值电压过高引起的计时不准,增加了系统的可用度。
通过软件设置母线欠压保护阀值和计时(0.1S),使系统工作时间精确可控。
通过SIS子系统中央控制单元的软件,区分电网晃电和变频器故障,杜绝电网晃电引起的停炉,又在变频器故障或收到相关保护信号时快速撤出直流电源。
控制、监测单元故障以及输入、输出端子悬空断线等,执行单元都会回到安全状态--断开,提高系统的可靠性。
系统的切换条件除欠压保护外,还可扩充过流保护、超载保护、过压保护、零序电流保护、负序电流保护、欠载保护、零序电压保护等,只需软件设置阀值即可。

两种计时方式比较:
电厂给粉机安全调速系统专为火电厂媒粉炉和循环硫化床(CFB)锅炉设计,附合电力行业设计标准。
其核心部分为SIS系统,结合技术成熟的直流电源,为电厂提供安全有效的给粉机变频器抗晃电解决方案。
该系统既解决了电网晃电时给粉机变频器跳闸引起的不必要停炉,又保障电网晃电和备自投切换时,炉膛给粉平稳。
实施后的效果:
1、取消大多数电厂现在对FSSS的给粉机全停逻辑2~5秒延时(这个延时期,炉膛给粉严重不稳)。
2、理论上可以将FSSS的1、2组电源丧失信号延时做到安全给粉系统最大工作时间,因为这个时期给粉机变频器还是正常工作的。实际使用中根据电厂其他系统的抗晃电能力和备自投切换时间来设置这个延时和安全给粉系统的工作时间,一般为2~3S。

第八章 系统配置

1、 电厂提供的现场条件:
炉九台,1~8号炉每台炉有2.2KW给煤粉机 8台,九号炉12台给粉机
总计:
电动机总数:76台;
电动机总功率167.2KW;
其中:富士品牌变频器8台一组,施耐德品牌变频器8台一组,其余为三菱品牌变频器60台,共七组。
电厂发电机所用的给粉机电源有A、B两段,分别控制4台给粉机,其中九号炉的二段电源分别控制6台给粉机。
电厂提供的现有接线条件:
一路380V/60A 3P+N+PE电源.
被保护变频器的状态干节点信号(要从FSSS取,干节点已经被FSS占用).
被保护变频器母线电源信号。
保护动作信号
被保护变频器二次接线图。
有关的工程设计条件,包括被保护变频器盘内布置图。
2、安全给粉系统的主要配置:
1、设备组成
1)、设备基本参数:
—蓄电池的输出功率167.2KW。
—直流输出回路76路,支持76台变频器。
—电池放电时间:167.2KW ≥2分钟。
2)、设备基本组成及柜体安排
充电器柜 一台 前后开门
直流控制柜 九台 前后开门
蓄电池柜,整套蓄电池重量在3.9吨左右,具有单只蓄电池的自检功能。共有一组中美合资冠军12V-200AH/ 40节电池组成。并有
630A/1200V直流空气开关分合并作短路保护和直流母线监测系统。
柜体具体安排:
—充电器柜;冗余高频DC 530V/10A 2台模块充电器、人机界面、中央监测单元、DC/DC 24V控制电源。
—直流控制柜1有多条直流回路,一次线路含有直流断路器、空气开关、直流接触器、直流隔离模块等,二次线路有直流回路监测单元和SIS子系统,SIS子系统由电机保护单元、中央控制单元等组成。柜内还有DC/DC 24V控制系统电源、DC/DC220V执行电源和人机界面。
直流控制柜2~直流控制柜8同上,
直流控制柜9柜有12条直流支撑回路,分别支撑9#炉中12台给粉机变频器,除直流回路增加以外,直流回路监测单元和SIS子系统中央控制单元也有相应变化。
各柜之间与HMI采用MODBUS485通讯方式传递数据。
由于现场九台炉之间相隔较远,最远的二台之间相距300米,因此柜体的安排采用如下方法:
1)、将系统的充电器柜和蓄电池柜集中定位在电厂低压MCC控制室中,采用直流母线方式连接到每一个炉控室。充电器柜与蓄电池柜以及直流回路柜之间用95平方毫米的电缆输送直流电压,并有一根8芯屏蔽通讯线缆连接。
2)、直流回路柜定位在每个炉控室的给粉机变频器交流母线柜旁,通过2.5mm2的直流电缆连接每台变频器的直流母线,通过2.5mm2的电缆采集变频器两段交流母线电压, 通过1.5mm2线缆采集各保护动作信号。
3.方案的最终确定实施时,我们会提供:
系统就位的平面布置图。
设备基础安装图。
电气条件图、SIS逻辑图、柜内接线图。设备荷重图各一份,可用电子版发送。
3、系统的环境要求:
使用场所:户内
环境温度:-10℃ — +50℃;电池室5℃--30℃
相对湿度:90%未结露
海拔高度:1000米以下
4、系统指标:
1、 输入电压:380 + 10%VAC,3P+N+PE 频率:50HZ + 1%。
2、 结构尺寸
1) 每组直流电源柜为落地安装式,防护等级:IP20
2) 进出线方式:下进下出线或按现场要求。
3)充电柜尺寸:   800×800×2260 (W×D×H)一台
电池柜尺寸:   800×800×2260 (W×D×H)两台
直流回路柜尺寸:   800×600×2260 (W×D×H)九台
上述电气柜外形尺寸(包括是否前后开门)根据现场要求。
4) 整流器柜体顶部加装2个风扇,下侧设有带滤网的进风口。
5) 每个柜均有铭牌,标明其功能。
3、功能描述
1) 当变频器交流进线电源故障(失压或短时停电)时,变频器在该系统保护下,在设计时间内连续正常运转。
2) 安全给粉系统的直流电源F在线工作,变频器供电电源由交流三相380V转至直流530V供电时无间断。
3) 电池组的备用时间根据设计,不少于2分钟。
4) 在电池组放电过程中,若三相电源恢复正常,则变频器供电自动切换至三相380V交流电源。
5) 交流电源晃电超过3秒钟,应自动分断直流接触器和直流断路器,安全给粉系统的直流电源停止供电。
6) 具备系统自诊断及故障显示功能。
7) 为延长蓄电池的使用寿命,充电系统具备“均充”与“浮充”功能,且能自动转换。均充电压、浮充电压HMI可调。在正常操作期间,电池应处于浮充状态。
8) 电池组具备以下功能:
定时均充:即在每隔6个月(HMI可设定)自动均充一次。
欠压均充:即电池放电至欠压时,自动进行均充(交流正常时)
9) 具备各种工作状态指示灯。
4、主要元器件选用说明
1) 电池组:使用中美合资冠军蓄电池有限公司系列全密封免维护铅酸蓄电池,七年设计寿命。
2)直流断路器、接触器、继电器、熔丝、按钮、指示灯等
A、电池输出开关选用ABB空开,3极串联,提高分断能力,带热磁脱扣,速断容量2Ie。
C、接线端子。采用PHINIEX产品。
D、直流接触器用ABB产品。
E、SIS子系统中央控制单元选用AB logix顺序控制器。
F、控制柜选用国产标准电控柜。
G、采用5.7″触摸屏,用以完成系统的运行控制。以报表和数据形式显示设备的运行状态、报警记录等,并可即时修改设备的运行参数。在触摸屏上存贮每次晃电时间,记录时间精确到秒。最少存贮最近的100次晃电时间。
H、DC24V控制电源: DC//DC24V和220V模块,选用广东合资厂产品,输入电源取自直流母线。
I、充电模块:输入电压为380VAC±15%,输出(浮充电压值)可调,输出电流10A,两组串联,充电器纹波电压值﹤±2%。
J、导线:一次接线采用适合相应电流电压等级的铜芯导线或铜排。单元内的二次接线采用最小截面为:电流回路2.5mm2, 电压回路1.5mm2。所有端子连接片为压紧型,所有端子适宜铲形连接片的连接,线路两端都要带永久线标。所有柜内端子接线满足外部电力电缆终端和控制电缆接线端子的要求。
K、指示灯、按钮采用上海二工电器厂产品。
L、直流配电所用元件及控制柜均符合所用场合的电压、电流要求。所有断路器均应有过负荷热保护并有合适的电流定值,且所有断路器在出厂前按定值进行校验。配电柜侧应考虑所有屏蔽电缆的接地。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭