SSI接口技术及其在音频处理中的应用
扫描二维码
随时随地手机看文章
随着嵌入式系统的广泛应用,系统内串口通信的需求越来越高,串行数据传输的协议也多样化,常用的有SSI、SPI、I2C、UART等。其中,SSI是一种带有帧同步信号的串行数据协议。微处理器MCF5329中的SSI接口除了能用作一般的串行数据传输外,由于它带有的帧同步信号可用作左右声道数据的同步,支持两种音频总线接口(I2S和AC97接口),所以它还能用作音频数据的传输。
TLV320DAC23是TI公司推出的高性能立体声高端编解码芯片,支持多种采样率和多种音频格式,并具有功耗低、封装小的特点,广泛应用于便携式数字音频处理系统中。
1 同步串行接口SSI的工作原理
从图中可看出,SSI模块由发送电路、接收电路、串行时钟和帧同步时钟产生电路组成。发送电路和接收电路相互独立,但是共用串行时钟和帧同步时钟。
1.1 SSI模块引脚信号描述
SSLCLKIN:SSI时钟输入信号。
SSLBCLK:SSI串行比特时钟。
SSLMCLK:SSI串行主时钟信号,在SSI主模式下,
该信号也作为过采样时钟信号。
SSI_FS:SSI串行帧同步信号。
SSLRXD:SSI串行接收数据信号。
SSI_TXD:SSI串行发送数据信号。
1.2 SSI的操作模式
SSI有3种基本同步操作模式:普通模式、网络模式和门时钟模式。
除了上述3种基本模式外,针对音频上的应用,SSI还支持两种衍生模式——I2S模式和AC97模式,分别用于传输I2S和AC97音频格式数据。
1.3 SSI的初始化
初始化SSI模块的正确顺序:
②配置SSI模块。涉及的寄存器包括控制寄存器SSI_CR、中断允许寄存器SSI_IER、发送配置寄存器SSI_TCR、接收配置寄存器SSI_RCR和时钟控制寄存器SSI_CCR。
④设置SSI_CR[SSI_EN]=1允许SSI模块功能。
⑤设置SSI_CR[TE/RE],开始发送/接收数据。
1.4 SSI的工作过程
(1)发送数据
单通道时,数据从串行发送数据寄存器SSI_TX0中传到发送移位寄存器TXSR中,再通过串行发送引脚SSI_TXD发送出去,然后根据用户设置情况决定是否产生发送中断。如果发送缓冲区TXFIFOO被允许,则SSI_TX0继续从TXFIFOO中取数据,直到TXFIFOO中的数据全部被发送,再通过用户设置情况决定是否产生发送中断。双通道时,发送移位寄存器TXSR交替从SSI_TX0
和SSI_TXl中取出数据。
(2)接收数据
单通道时,数据从串行接收引脚SSI_RXD进来,由接收移位寄存器RXSR传输给接收数据寄存器SSI_RX0,再根据用户设置情况决定是否产生接收中断。如果接收缓冲区RXFIFOO被允许,则SSI_RX0将数据写入RXFIFOO,并继续从接收移位寄存器中获取数据。双通道时,接收移位寄存器RXSR交替将数据传输给SSI_RX0和SSI_RXl。
2 音频编解码芯片简介
TLV320DAC23是TI公司推出的一颗高性能立体声音频处理芯片(CODEC芯片),采用了多比特sigma-delta过采样技术,采样率可以从8 kHz到96 kHz,传输字长可选择为16位、20位、24位或32位;最大输出信噪比可达到100 dB;控制端口可兼容SPI、2-wire等协议;回放模式下功率为18 mw,省电模式下小于15μW;适用于便携式的数字音频处理。其功能模块框图如图2所示。
2.1 控制接口
MODE:模式选择引脚。为0时,采用2一wire模式;为1时,采用SPI模式。
SCLK:控制端口串行数据时钟。
SDI:控制端口串行数据输入。
2.2 模拟接口
模拟接口包括线输入、线输出和耳机输出。耳机输出可以驱动16Ω或32 Ω的耳机,音量增益为6 dB到一73 dB。
LLINEIN、RLINEIN:左、右声道输入。
LOUT、ROUT:左、右声道输出。
LHPOUT、RHPOUT:左、右声道耳机输出
2.3 数字音频接口
数字音频接口用于输入TLV320DAC23的D/A数据。
BCLK:I2S串行比特时钟。主模式时BCLK为输出,从模式时BCLK为输入。
DIN:I2S串行数据输入。
LRCIN:字时钟信号(帧信号),用于控制左、右声道的数据。在主模式中,由TLV320DAC23产生该信号,在从模式中,由主设备(如DSP或MCU)产生该信号。
TLV320DAC23支持4种音频接口模式:右对齐模式、左对齐模式、I2S模式和DSP模式。这4种模式都是最高有效位MSB在前,16到32位不同的字长(右对齐除外,它不支持32位)。图4是I2S模式下的数字音频接口时序,数据的MSB在LRCIN下降沿后的第2个BCLK上升沿开始传输。[!--empirenews.page--]
2.4 时钟接口
MCLK:芯片主时钟信号。当TLV320DAC23作为主设备时,该信号由芯片自身产生;当TLV320DAC23作为从设备时,该信号由外部产生。
CLKOUT:时钟输出信号。可以为MCLK或MCLK/2。
3 基于MCF5329的音频驱动设计
3.1 硬件电路
TLV320DAC23与MCF5329的接口有两个:一个是控制接口,用于设置TLV320DAC23的寄存器,从而设置它的工作参数。由于MCF5329具有QSPI模块,它兼容SPI接口格式,所以TLV320DAC23的控制接口采用SPI模式。另一个是数字音频接口,用于传输TLV320DAC23的音频数据并控制数据的时序。由于MCF5329的SSI模块支持I2S音频格式,所以TLV320DAC23的数字音频接口采用I2S模式。
在本设计中,由微控制器MCF5329提供时钟信号,所以将MCF5329设为主设备,TLV320DAC23作为从设备。具体连接如图5所示。
3.2 软件设计
音频播放的过程如下:程序检测到用户空间有需要播放的音频数据,便将音频数据拷贝到所建立的缓冲区中;然后通过DMA将缓冲区的音频数据传输到SSI模块的发送引脚SSI_TXD,发送引脚将数据发送至TLV320DAC23中,通过耳机播放出来。
软件设计的流程如图6所示。其中,音频缓冲区被设置为一个固定大小的循环队列,其设置如图7所示。初始时,bufstart、audiostart、audiotail都指向缓冲区头。当用户空间有数据时,将数据拷贝到缓冲区并用audiotail指示数据尾部,数据的头部通过DMA引擎连接到SSI_TXD引脚,随着数据被SSI_TXD发送至TLV320DAC23,audiostart跟踪数据的头部。
结 语
本文分析了同步串行接口SSI的工作原理及过程,并通过与编解码芯片TLV320DAC23的通信详细介绍了SSI在音频处理中的应用。实践表明,SSI接口简单,使用灵活可靠。