当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]DSP内嵌PLL中的CMOS压控环形振荡器设计

 1 引言
  在现代高性能DSP芯片设计中,锁相环(PLL)被广泛用作片内时钟发生器,实现相位同步及时钟倍频。压控振荡器(VCO)作为PLL电路的关键模块,其性能将直接决定PLL的整体工作质量。目前,在CMOS工艺中实现的VCO主要有两大类:LC压控振荡器和环形压控振荡器。其中LC压控振荡器具有较低的相位噪声和较低的功耗,但需要采用片上集成电感,因而占用很大的芯片面积,且调谐范围较小。而CMOS环形振荡器有着频率调节范围大,芯片面积小,制造工艺简单等优点,且可以通过调整振荡器的级数,方便的获得不同相位的一系列时钟,因此在系统芯片(SOC)中有着更为广泛的应用。
  本文提出了一种采用四级延迟单元的CMOS环形压控振荡器,每级采用调节电流源大小,改变电容放电速度的方式,在方便的提供正交输出时钟的同时,具有2MHz至90MHz频率调节范围以及较低的功耗,可满足DSP芯片时钟系统的应用要求。
  2 VCO电路设计
  在锁相环系统中VCO的作用是根据不同的控制电压.输出相应振荡频率的波形,并将其输入至分频器,从而反馈到输入端。因此理想的VCO其特性函数应为:
  其中Kvco为常数,表示电路的灵敏度。而实际的VCO调节特性表现出非线性,也就是Kvco不是常数,这种非线性使锁相环的稳定性退化,因此我们希望在尽可能宽的频率调节范围内Kvco的变化最小。
  2.1 整体电路结构
  压控环形振荡电路的整体结构框图如图1所示,整个环路由四级延迟单元构成,每级延迟为TD,其中前三级电路接成反相的,最后一级电路正相连接,因此电路不会被锁定,且每级振荡电路的输出时钟相移为45°。
图1 压控环形振荡器的整体结构框图
 
  这里,V是电荷泵的输出电压经低通环路滤波器去除高频成分后的直流分量,用来控制每级延迟单元的延迟时间。Venable是来自外部控制电路的使能信号,当Venable为低电平时每级差分输出的两端均为“0”,此时整个VCO电路关闭,停止振荡;当Venable为高电平,电路正常工作时,环路在连续的电压结点之闸以的延迟振荡,产生的振荡周期为8TD。只要在输入电压和延迟时间TD之问建立起线形的关系,输出信号的频率F∝1/TD,就能够实现VCO所需的输入电压和输出频率之间的线性关系。
  2.2单元电路设计
  振荡器延迟单元的电路结构如图2所示,电路采用RS触发结构来产生差分输出的信号,这在消除静态功耗的同时,具有较好的抗噪声性能。图中的M1管和M4管分别提供对电容C1和C2充电时的电流。M2管和M5管作为电流源提供电容放电时的电流,其电流大小随控制电压V而改变,从而实现对电容放电速度的调节。另外,电容C1和C2是用源漏端接地的NMOS管制成的MOS栅氧电容,具有很高的单位面积电容值,以及较好的精度。
图2 延迟单元电路图
  下面计算单元电路的延迟时间,以C1为例,当输入为高电平时,电路通过电流源M2管对电容放电,当电容两端电压降至输入与非门NAND1的翻转点Vs时,与非门输出状态转换,其状态从“0”到“1”的转换时间为:
  这里由于C1电容远大于M1、M2管的漏端电容和与非门NAND1的输入电容之和,因此可忽略它们的影响,Id2为V受控制的电流源M2管的电流。
  当输人为低电平时,电路通过M1管对电容进行充电。当电容充电至三输入与非门NAND1的翻转点Vs时,与非门输出并不立即改变,因为交叉耦合的另一个与非门NAND2的输出仍为低电平,需C2电容放电至Vs以下,输出才会改变。因此与非门NAND1的输出从“1”到“0”转换的时问由电容C2的放电时间决定,为:
  其中Id5为受V控制的电流源M5管的电流。
  为了保证每级单元电路的差分输出端有相同的延迟,电路中各个对应的晶体管具有相同的宽长比,即C1与C2相等,Id2与Id5相等,因此t1=t2,且因为C1、C2的电容值较大,相对于其充放电的时间,三输入与非门和反向器的延迟时间可以忽略不计,  因此,单元电路总的延时时间为:
  设计时三输入与非门的翻转点Vs是一个需考虑的问题。为了避免随着控制电流的增大,控制管在电容放电过程中进入线性区,导致压控振荡器的线性覆盖频率范围减少,Vs的值应尽可能的大。但是如果翻转点Vs过高,会使电容放电时间变短,当Vs接近Vdd时,三输入与非门和反向器的延迟时间不再可以忽略,此时振荡器的频率调节范围将大大减少。综合以上两方面,另外考虑到噪声容限、速度、面积等因素,这里设计的三输入与非门的翻转点Vs为2.6V。
  3 仿真结果与分析
  根据以上分析,采用SMIC的0.35斗μmCMOS工艺模型进行仿真,图4为控制电压为2V时VCO的X1端的输出波形图。另外,由于采用的是四级环形振荡器结构,可以方便的产生正交时钟信号,其中X1端的输出波形与X3端正交,X2端的输出波形与X4端正交。图5为当VCO的控制电压在0.9V~3.5V变化时输出频率的变化图,从图中可以看到VCO的频率调节范围达到2MHz~90MHz.在中心频率46MHz附近有很好的调节线性度。当控制电压高于3V以后,频率变化呈一定的非线性,这是因为随着控制电压的增大,在电容放电过程中,控制管会进入线性区,导致控制电压对电流源变化的影响减小。但由于本文设计的VCO应用于DSP芯片的典型运行频率为40MHz,因此VCO在中心频率附近的高线性度可完全满足DSP时钟系统的要求。
图5 环形压控振荡器的电压一频率特性曲线
  4 结论
  本文设计了一种应用于DSP内嵌锁相环的低功耗、高线性CM0S压控环形振荡器。电路采用四级延迟单元能方便的获得正交输出时钟,每级采用RS触发结构来产生差分输出信号,在有效降低静态功耗的同时.具有较好的抗噪声能力。在延迟单元的设计时。综合考虑了电压控制的频率范围以及调节线性度,选择了合适的翻转点。 仿真结果表明.电路叮实现2MHz至90MHz的频率调节范围,在中心频率附近具有很高的调节线性度,可完全满足DSP芯片时钟系统的要求。
  本文作者创新点:本文作者设计的CMOS压控环形振荡器电路采用四级延迟单元能方便的获得正交输出时钟.每级采用RS触发结构来产生差分输出信号,在有效降低静态功耗的同时,具有较好的抗噪声能力。在延迟单元的设计时。综合考虑了电压控制的频率范围以及调节线性度,选择了合适的翻转点。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭