当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]高速DSP系统的电路板级电磁兼容性设计

 随着高速DSP技术的广泛应用,相应的高速DSP的PCB设计就显得十分重要。由于DSP是一个相当复杂、种类繁多并有许多分系统的数、模混合系统,所以来自外部的电磁辐射以及内部元器件之间、分系统之间和各传输通道间的串扰对DSP及其数据信息所产生的干扰,已严重地威胁着其工作的稳定性、可靠性和安全性。据统计,干扰引起的DSP事故占其总事故的90%左右。因此设计一个稳定、可靠的DSP系统,电磁兼容和抗干扰至关重要。

  1 DSP的电磁干扰环境

  电磁干扰的基本模型由电磁干扰源、耦合路径和接收机3部分组成,如图1所示。

  


 

  电磁干扰源包含微处理器、微控制器、静电放电、瞬时功率执行元件等。随着大量高速半导体器件的应用,其边沿跳变速率非常快,这种电路可以产生高达300 MHz的谐波干扰。耦合路径可以分为空间辐射电磁波和导线传导的电压与电流。噪声被耦合到电路中的最简单方式是通过导体的传递,例如,有一条导线在一个有噪声的环境中经过,这条导线通过感应接收这个噪声并且将其传递到电路的其他部分,所有的电子电路都可以接收传送的电磁干扰。例如,在数字电路中,临界信号最容易受到电磁干扰的影响;模拟的低级放大器、控制电路和电源调整电路也容易受到噪声的影响。

  2 DSP电路板的布线和设计

  良好的电路板布线在电磁兼容性中是一个非常重要的因素,一个拙劣的电路板布线和设计会产生很多电磁兼容问题,即使加上滤波器和其他元器件也不能解决这些问题。

  正确的电路布线和设计应该达到如下3点要求:

  (1)电路板上的各部分电路之间存在干扰,电路仍能正常工作;

  (2)电路板对外的传导发射和辐射发射尽可能低,达到有关标准要求;

  (3)外部的传导干扰和辐射干扰对电路板上的电路没有影响。

  2.1 元器件的布置

  (1)元器件布置的首要问题是对元器件进行分组。元器件的分组原则有:按电压不同分;按数字电路和模拟电路分;按高速和低速信号分和按电流大小分。一般情况下都按照电压不同分或按数字电路与模拟电路分。

  (2)所有的连接器都放在电路板的一侧,尽量避免从两侧引出电缆。

  (3)避免让高速信号线靠近连接器。

  (4)在元器件安排时应考虑尽可能缩短高速信号线,如时钟线、数据线和地址线等。

  2.2 地线和电源线的布置

  地线布置的最终目的是为了最小化接地阻抗,以此减小从电路返回到电源之间的接地回路电势,即减小电路从源端到目的端线路和地层形成的环路面积。通常增加环路面积是由于地层隔缝引起的。如果地层上有缝隙,高速信号线的回流线就被迫要绕过隔缝,从而增大了高频环路的面积,如图2所示。

  

 

  图2中高速线与芯片之间进行信号传输。图2(a)中没有地层隔缝,根据“电流总是走阻抗最小的途径”,此时环路面积最小。图2(b)中,有地层隔缝,此时地环路面积增大,这样就产生如下后果:

  (1)增大向空间的辐射干扰,同时易受空间磁场的影响;

  (2)加大与板上其他电路产生磁场耦合的可能性;

  (3)由于环路电感加大,通过高速线输出的信号容易产生振荡;[!--empirenews.page--]

  (4)环路电感上的高频压降构成共模辐射源,并通过外接电缆产生共模辐射。

  通常地层上的隔缝不是在分地时、有意识地加上的,有时隔缝是因为板上的过孔过于接近而产生的,因此在PCB设计中应尽量避免该种情况发生。

  电源线的布置要和地线结合起来考虑,以便构成特性阻抗尽可能小的供电线路。为了减小供电用线的特性阻抗,电源线和地线应该尽可能的粗,并且相互靠近,使供电回路面积减到最小,而且不同的供电环路不要相互重叠。在集成芯片的电源脚和地脚之间要加高频去耦电容,容量为O.01~O.1μF,而且为了进一步提高电源的去耦滤波的低频特性,在电源引入端要加上1个高频去耦电容和1个1~10μF的低频滤波电容。

  在多层电路板中,电源层和地层要放置在相邻的层中,从而在整个电路板上产生一个大的PCB电容消除噪声。速度最快的关键信号和集成芯片应当布放在临近地层一边,非关键信号则布放在靠近电源层一边。因为地层本身就是用来吸收和消除噪声的,其本身几乎是没有噪声的。

  2.3 信号线的布置

  不相容的信号线之间能产生耦合干扰,所以在信号线的布置上要把它们隔离,隔离时采取的措施有:

  (1)不相容信号线应相互远离,不要平行,分布在不同层上的信号线走向应相互垂直,这样可以减少线间的电场和磁场耦合干扰;

  (2)高速信号线特别是时钟线要尽可能的短,必要时可在高速信号线两边加隔离地线;

  (3)信号线的布置最好根据信号流向顺序安排,一个电路的输入信号线不要再折回输入信号线区域,因为输入线与输出线通常是不相容的。

  当高速数字信号的传输延时时间Td>Tr(Tr为信号的脉冲上升时间)时,应考虑阻抗匹配问题。因为错误的终端阻抗匹配将会引起信号反馈和阻尼振荡。通常线路终端阻抗匹配的方法有串联源端接法、并联端接法、RC端接法、Thevenin端接法4种。

  (1)串联源端接法

  图3为串联源端接电路。

  

 

  源端阻抗Zs和分布在传输线上的阻抗Zo之间,加上源端接电阻Rs,用来完成阻抗匹配,Rs还能吸收负载的反馈。这里的Rs必须离源端尽可能的近,理论上应为Rs=Zo-Zs中的实数值。一般Rs取15~75Ω。

  (2)并联端接法

  图4为并联端接电路。附加1个并联端电阻Rp,这样Rp与ZL并联后就与Zo相匹配。这个方法需要源驱动电路来驱动一个较高的电流,能耗很高,所以在功耗小的系统中不适用。

  

 

  (3)RC端接法

  图5为RC端接电路。该方法类似于并联端接电路,但引入了电容C1,此时R用于提供匹配Zo的阻抗。C1为R提供驱动电流并过滤掉从传输线到地的射频能量。因此与并联端接方法相比,RC端接电路需要的源驱动电流更少。R和C1的值由Zo,Tpd(环路传输延迟)和终端负载电容值Cd决定。时间为常数,RC=3Tpd,其中R∥ZL=Zo,C=C1∥Cd。

  

 

  (4)Thevenin端接法

  图6为Thevenin端接电路。该电路由上拉电阻R1和下拉电阻R2组成,这样就使逻辑高和逻辑低与目标负载相符。其中,R1和R2的值由R1∥R2=Zo决定,R1+R2+ZL的值要保证最大电流不能超过驱动电路容量。

  

 

  3 结语

  本文通过对电子产品电磁环境的分析,确定高速DSP系统中产生干扰的主要原因,并针对这些原因,通过对高速DSP系统的多层板布局、器件布局以及PCB布线等方面进行分析,给出有效降低DSP系统的干扰、提高电磁兼容性能的措施。从设计层次保证了高速DSP系统的有效性和可靠性。合理布局设计,减少噪声,降低干扰,避开不必要的失误,对系统性能的发挥起到不可低估的作用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭