当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]多处理器系统中Nios II软核处理器启动方案的设计

引言 

       Nios II 处理器是Altera公司设计的一款基于FPGA的32位RISC嵌入式软核处理器,具有32位指令集、数据通路及地址空间,是其可编程系统芯片(SOPC)的核心。Nios II系统采用Altera公司设计的一套Avalon总线交换结构,Avalon总线上的所有信号都与系统时钟同步且地址、数据和控制信号使用独立的端口;支持各种传输方式;采用从端口仲裁机制,对于有多个主设备的系统可以提高系统的吞吐量。

       采用基于FPGA 的Nios II软核处理器很容易在嵌入式系统设计中实现多处理器系统。在这样的多处理器系统中,一般外部处理器做主处理器,Nios II处理器为从处理器,两个处理器有共用的存储器可以进行数据交互。本文将通过对Nios II系统启动的研究设计一方案,用外部处理器配置FPGA,加载程序代码到Nios II系统中的程序存储器中,最终完成Nios II系统的启动。

       在多处理器系统的启动方案 

       在多处理器系统中,为了降低成本,可以省去Nios II的一个非易失性存储器外设,如flash、EPROM等,Nios II处理器通过Avalon交换结构连接易失性存储器,一个外部主处理器及一些必要的接口外设。因此延迟Nios II的启动是必要的,解决办法是在Nios II系统中设计一启动延迟模块,把此模块的基址设为Nios II的复位地址。通过此模块,Nios II处理器上电复位后启动被延迟,直到数据被传输完毕,外部处理器通过启动延迟模块向Nios II发送一个可以开始进入程序存储器的指令,然后跳转到程序存储器开始执行,完成后续的设备初始化及应用程序的执行。 

       外部处理器通过时序转接桥连接在Avalon交换结构上和Nios II处理器共同构成的一个双处理器系统如图1所示。黑色箭头表示Nios II启动延迟模块是通过Avalon交换结构连接的。

                                  

         图1  多处理器系统的启动方案结构 

       启动方案的硬件设计 

       启动延迟模块如图2所示,它有两个从端口S1、S2:S1一端连接在启动延迟模块中的ROM单元上,另一端通过Avalon总线连接在Nios II处理器的指令主端口;S2一端连接在启动延迟模块的控制寄存器上,另一端通过Avalon总线连接在外部处理器和Nios II处理器的数据主端口。图2中箭头的方向表示数据的流向。

                                          

     图2 Nios II启动模块的硬件结构 [!--empirenews.page--]

       在此需做两点说明:

* 在启动延迟模块中有两个寄存器,这两个寄存器定义如下: 

      
说明:控制寄存器1用于存放Nios
 

 

II程序存储器中_start程序的入口地址。控制寄存器2中跳转标志位(31_1位保留) 。

       这两个寄存器值由外部处理器来写入,其中偏移量为0的寄存器存放Nios II程序存储器中_start程序的入口地址,此值由外部处理器写入;偏移量为1的寄存器只用了第0位,其它位保留,当外部处理器配置好Nios II处理器系统后,会向此寄存器的第0位写入1,否则保持为0。

* ROM中的数据是外部处理器在配置FPGA的时候写入的,因此只要FPGA配置完成后,启动代码就存放进ROM中了。ROM的大小要根据启动程序代码的大小来决定,设计中应尽可能降低这段程序的代码存储量。

       下边是用Verilog 硬件描述语言编写的启动延迟模块的硬件代码的主体框架结构:
//ROM读端口(S1):
boot_rom       the_boot_rom
(
.clock    (s1_clk),   file://s1_clk为来自Avalon总线模块上的S1端口的时钟信号
.aclr    (s1_reset),  file://s1_reset为来自Avalon总线模块上的S1端口的复位信号
.q       (s1_readdata), file://s1_readdata为流向Avalon总线模块的S1端口的32位数据
.address  (s1_address)  file://s1_address为来自于Avalon总线模块的S1端口的地址
);
file://控制寄存器读写端口(S2):
control_register   the control_register
(
.clk         (s2_clk),  file://s2_clk为来自Avalon总线模块上的S2端口的时钟信号
.reset       (s2_reset),  file://s2_reset为来自Avalon总线模块上的S2端口的复位信号
.read        (s2_read),  file://s2_read为来自Avalon总线模块上的S2端口的读使能信号
.write       (s2_write),  file://s2_write为来自Avalon总线模块上的S2端口的写使能信号
.schipselect  (s2_chipselect), file://s2_chipselect为来自Avalon总线模块上的S2端口的片选信号
.address     (s2_address), file://s2_address为来自Avalon总线模块上的S2端口的地址 
.readdata    (s_readdata),  file://s2_chipselect为流向Avalon总线模块上的S2端口的32位读数据
.writedata   (s2_writedata) file://s2_writedata为来自Avalon总线模块上的S2端口的32位写数据
); 

       启动方案的软件设计 

       启动方案的软件设计目标是当系统复位后,在外部处理器向Nios II程序存储器和数据存储器传输数据的过程中,Nios II处理器运行要受到外部处理器的控制。当一切就绪后,外部处理器发出一条释放Nios II处理器的命令,接下来Nios II处理器就可以正常运行了。 

       软件部分主要就是存放在启动延迟模块中ROM的代码,此代码主要是检测启动延迟模块中控制寄存器2的第0位是否为1。若为1,则跳转到控制寄存器1中所存储的地址处执行。若设控制寄存器的基址为CONTROL_REG_BASE,为了减少代码量,这段代码容易用Nios II的汇编指令来实现,代码部分在此从略。 

       最后本方案在我们自己设计的一块开发板上经过测试,能够正确完成Nios II 处理器的启动。 
       
       结语 

       采用多处理器的系统虽然可以提高系统的性能,但传统的多处理器系统一般只出现在工作站及高端PC上,在嵌入式系统中由于其设计代价太高很少采用。本文设计了一种在多处理器系统中的Nios II软核处理器的启动方案,这个方案在外部处理器向Nios II的程序存储器和数据存储器加载数据时,可以控制Nios II处理器的启动。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭