当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]IGBT及其子器件的四种失效模式介绍

1、  引言

IGBT及其派生器件,例如:IGCT,是MOS和双极集成的混合型半导体功率器件。因此,IGBT的失效模式,既有其子器件MOS和双极的特有失效模式,还有混合型特有的失效模式。MOS是静电极敏感器件,因此,IGBT也是静电极敏感型器件,其子器件还应包括静电放电(SED)防护器件。据报道,失效的半导体器件中,由静电放电及相关原因引起的失效,占很大的比例。例如:汽车行业由于失效而要求退货的器件中,其中由静电放电引起的失效就占约30%。

本文通过案例和实验,概述IGBT及其子器件的四种失效模式:

(1)       MOS栅击穿;

(2)       IGBT——MOS阈值电压漂移;

(3)       IGBT寿命期内有限次连续短路脉冲冲击的累积损伤;

(4)       静电放电保护用高压npn管的硅熔融。

2、  MOS栅击穿

IGBT器件的剖面和等效电路见图1。

由图1可见,IGBT是由一个MOS和一个npnp四层结构集成的器件。而MOS是金属—氧化物—半导体场效应管的简称。其中,氧化物通常是硅衬底上氧化而生成的SIO2,有时还迭加其他的氧化物层,例如Si3N4,Al2O3。通常设计这层SiO2的厚度ts:

微电子系统:ts<1000A电力电子系统:ts≥1000A。

SiO2,介质的击穿电压是1×1019V/m。那么,MOS栅极的击穿电压是100V左右。

人体产生的静电强度U:

湿度:10-20%,U>18000V;60-90%时,U≥1500V。

上述数据表明,不附加静电保护的MOS管和MOS集成电路(IC),只要带静电的人体接触它,MOS的绝缘栅就一定被击穿。

案例:上世纪六十年代后期,某研究所研制的MOS管和MOS集成电路。不管是安装在印刷电路板上还是存放在盒中的此种器件,都出现莫名其妙的失效。因此,给MOS一个绰号:摸死管。

如果这种“摸死”问题不解决,我国第一台具有自主知识产权的MOS集成电路微型计算机就不可能在1969年诞生。经过一段时间的困惑,开始怀疑静电放电的作用。为了验证,准备了10支栅极无任何防护的MOS管,用晶体管特性测试仪重新测试合格后,即时将该器件再往自己身上摩擦一下再测特性,结果发现:100%栅击穿!随后,在MOS管的栅极一源极之间反并联一个二极管,问题就基本解决。意外的结果:“摸死管”成了一句引以为戒的警语。该研究所内接触和应用MOS管MOS-IC的同事,对静电放电对器件的破坏性影响都有了深刻的体验。

3、  IGBT——MOS阈值电压漂移——一种可能隐藏的失效模式

MOS管的阈值电压Vth的方程式:

               (1)

式中VSS=表面态阈值电压,Vhh =本征阈值电压,

常数

(费米势),N=硅衬底杂质浓度。

图2是栅电压VG和栅电容CO的C—V曲线,曲线上的箭头表时扫描方向。

 

由图2可见。C—V曲线是一条迟滞回路,该回路包络的面积等于表面态电荷,QSS是由Si—SiO2界面缺陷和正电荷离子引起的。而且,Si—SiO2界面的QSS始终是正的。即VSS总是向VITH正向移动。这就决定了沟增强型MOS管和P沟数字集成电路容易实现。

为了减小QSS和防止SiO2——Si界面电荷交换与移动,引起阈值电压漂移,采取了许多措施:

(1)       将<111>硅衬底换为<100>硅衬底,减小硅表面的非饱和键;

(2)       制备工艺中使用的石英器皿,气体和化学试剂均提升纯度级别,尽量减小Na离子的污染含量;

(3)       研发新的绝缘栅介质系列:

·Si3N4——Si,Si3N4——SiO2——Si;

·Al2O3——Si,Al2O3——SiO2——Si。

    以上措施,对低压微功耗的微电子的应用,已证明MOS与MOSIC是可靠的。但是对于电力电子应用的场合:高电压,大电流和工作温度范围较宽。特别是,静电放电电压接近栅极击穿电压而又未穿栅极时,例如上文所示接近100V时,仍有隐忧:

(1)       较高栅电压下,阈值电压漂移较大,图3示出P沟硅栅MOS在高栅电压下的。由图3可见,栅电压VG=40V时,=4V。

 

(2)       PT—IGBT在高温栅偏压下阈值电压漂移。图4给出PT—IGBT(IRG4BC20F)在(1)栅已射极Gge=20V,Vce=OV(HTGB)和(2)Vge=0V,Vce=0.8V(HTRB)在140℃,经过1200小时的应力试验结果。由图4中的HTGB曲线可见,栅偏置试验开始后100小时内,时线性增加,随后趋于稳定。

(3)       电可擦只读存贮器(electrically erasable read-only memory,简称EEROM)的存贮单元是氮化硅(Si3N4)—二氧化硅(SiO2)构成的双层绝缘栅的MOS管,它利用栅极注入电荷来改变ROM存贮单元的状态。

(4)       MOS是一种单极,多数载流子器件,按半导体器件理论,它的抗辐射,主要是抗γ射线的能力应该比双极、少数载流子器件强,但是,实际情况刚相反。这说明MOS的绝缘栅结构在辐射场下有较大的损伤和电荷交换。

(5)       以上4种情况说明,MOS阈值电压漂移在电力电子的应用条件,即高电压(接近栅击穿电压)、大电流和高温(接近pn结临界温度150℃)时,是一种导致器件和电路失效的潜在参数,似乎仍需系统考察和修订老化条件。所以,将称作是一种可能隐藏的失效模式。

4、  IGBT寿命期限内,有限次数短路脉冲冲击的累积损伤失效

      在寿命期限内,IGBT会遇到在短路、雪崩等恶劣条件下工作,它能承受短路脉冲冲击的次数是有限的,并和相关条件有关。

4.1非穿通型(NPT)IGBT的鲁棒性

NPT—IGBT的鲁棒性见图5,被测器件是SGW15N120。在540V 125℃时测试。X轴是耗散的能量。Y轴是器件直至损坏的短路周期次数。

由图5可见,在给定条件下,器件有一个临界能量:

EC=V·I·TSC=1.95J(焦耳)

式中,TSC是短路持续时间

当E>EC时,,第一次短路就使器件失效。

当E<EC时,大约要经历104次短路以上,器件会因周期性的能量累积退化使它失效。

当E=EC时,器件失效模式不明确。当能量等于或稍等于EC时,器件关断后,器件的拖尾电流,经过一段延迟时间td f ,将导致热击穿。这段延缓性失效时间为微秒级。

图6给出不同短路续时间TSC,IGBT测量的短路电流波形。

[!--empirenews.page--]

 

 

1、  引言

IGBT及其派生器件,例如:IGCT,是MOS和双极集成的混合型半导体功率器件。因此,IGBT的失效模式,既有其子器件MOS和双极的特有失效模式,还有混合型特有的失效模式。MOS是静电极敏感器件,因此,IGBT也是静电极敏感型器件,其子器件还应包括静电放电(SED)防护器件。据报道,失效的半导体器件中,由静电放电及相关原因引起的失效,占很大的比例。例如:汽车行业由于失效而要求退货的器件中,其中由静电放电引起的失效就占约30%。

本文通过案例和实验,概述IGBT及其子器件的四种失效模式:

(1)       MOS栅击穿;

(2)       IGBT——MOS阈值电压漂移;

(3)       IGBT寿命期内有限次连续短路脉冲冲击的累积损伤;

(4)       静电放电保护用高压npn管的硅熔融。

2、  MOS栅击穿

IGBT器件的剖面和等效电路见图1。

由图1可见,IGBT是由一个MOS和一个npnp四层结构集成的器件。而MOS是金属—氧化物—半导体场效应管的简称。其中,氧化物通常是硅衬底上氧化而生成的SIO2,有时还迭加其他的氧化物层,例如Si3N4,Al2O3。通常设计这层SiO2的厚度ts:

微电子系统:ts<1000A电力电子系统:ts≥1000A。

SiO2,介质的击穿电压是1×1019V/m。那么,MOS栅极的击穿电压是100V左右。

人体产生的静电强度U:

湿度:10-20%,U>18000V;60-90%时,U≥1500V。

上述数据表明,不附加静电保护的MOS管和MOS集成电路(IC),只要带静电的人体接触它,MOS的绝缘栅就一定被击穿。

案例:上世纪六十年代后期,某研究所研制的MOS管和MOS集成电路。不管是安装在印刷电路板上还是存放在盒中的此种器件,都出现莫名其妙的失效。因此,给MOS一个绰号:摸死管。

如果这种“摸死”问题不解决,我国第一台具有自主知识产权的MOS集成电路微型计算机就不可能在1969年诞生。经过一段时间的困惑,开始怀疑静电放电的作用。为了验证,准备了10支栅极无任何防护的MOS管,用晶体管特性测试仪重新测试合格后,即时将该器件再往自己身上摩擦一下再测特性,结果发现:100%栅击穿!随后,在MOS管的栅极一源极之间反并联一个二极管,问题就基本解决。意外的结果:“摸死管”成了一句引以为戒的警语。该研究所内接触和应用MOS管MOS-IC的同事,对静电放电对器件的破坏性影响都有了深刻的体验。

3、  IGBT——MOS阈值电压漂移——一种可能隐藏的失效模式

MOS管的阈值电压Vth的方程式:

               (1)

式中VSS=表面态阈值电压,Vhh =本征阈值电压,

常数

(费米势),N=硅衬底杂质浓度。

图2是栅电压VG和栅电容CO的C—V曲线,曲线上的箭头表时扫描方向。

 

由图2可见。C—V曲线是一条迟滞回路,该回路包络的面积等于表面态电荷,QSS是由Si—SiO2界面缺陷和正电荷离子引起的。而且,Si—SiO2界面的QSS始终是正的。即VSS总是向VITH正向移动。这就决定了沟增强型MOS管和P沟数字集成电路容易实现。

为了减小QSS和防止SiO2——Si界面电荷交换与移动,引起阈值电压漂移,采取了许多措施:

(1)       将<111>硅衬底换为<100>硅衬底,减小硅表面的非饱和键;

(2)       制备工艺中使用的石英器皿,气体和化学试剂均提升纯度级别,尽量减小Na离子的污染含量;

(3)       研发新的绝缘栅介质系列:

·Si3N4——Si,Si3N4——SiO2——Si;

·Al2O3——Si,Al2O3——SiO2——Si。

    以上措施,对低压微功耗的微电子的应用,已证明MOS与MOSIC是可靠的。但是对于电力电子应用的场合:高电压,大电流和工作温度范围较宽。特别是,静电放电电压接近栅极击穿电压而又未穿栅极时,例如上文所示接近100V时,仍有隐忧:

(1)       较高栅电压下,阈值电压漂移较大,图3示出P沟硅栅MOS在高栅电压下的。由图3可见,栅电压VG=40V时,=4V。

 

(2)       PT—IGBT在高温栅偏压下阈值电压漂移。图4给出PT—IGBT(IRG4BC20F)在(1)栅已射极Gge=20V,Vce=OV(HTGB)和(2)Vge=0V,Vce=0.8V(HTRB)在140℃,经过1200小时的应力试验结果。由图4中的HTGB曲线可见,栅偏置试验开始后100小时内,时线性增加,随后趋于稳定。

(3)       电可擦只读存贮器(electrically erasable read-only memory,简称EEROM)的存贮单元是氮化硅(Si3N4)—二氧化硅(SiO2)构成的双层绝缘栅的MOS管,它利用栅极注入电荷来改变ROM存贮单元的状态。

(4)       MOS是一种单极,多数载流子器件,按半导体器件理论,它的抗辐射,主要是抗γ射线的能力应该比双极、少数载流子器件强,但是,实际情况刚相反。这说明MOS的绝缘栅结构在辐射场下有较大的损伤和电荷交换。

(5)       以上4种情况说明,MOS阈值电压漂移在电力电子的应用条件,即高电压(接近栅击穿电压)、大电流和高温(接近pn结临界温度150℃)时,是一种导致器件和电路失效的潜在参数,似乎仍需系统考察和修订老化条件。所以,将称作是一种可能隐藏的失效模式。

4、  IGBT寿命期限内,有限次数短路脉冲冲击的累积损伤失效

      在寿命期限内,IGBT会遇到在短路、雪崩等恶劣条件下工作,它能承受短路脉冲冲击的次数是有限的,并和相关条件有关。

4.1非穿通型(NPT)IGBT的鲁棒性

NPT—IGBT的鲁棒性见图5,被测器件是SGW15N120。在540V 125℃时测试。X轴是耗散的能量。Y轴是器件直至损坏的短路周期次数。

由图5可见,在给定条件下,器件有一个临界能量:

EC=V·I·TSC=1.95J(焦耳)

式中,TSC是短路持续时间

当E>EC时,,第一次短路就使器件失效。

当E<EC时,大约要经历104次短路以上,器件会因周期性的能量累积退化使它失效。

当E=EC时,器件失效模式不明确。当能量等于或稍等于EC时,器件关断后,器件的拖尾电流,经过一段延迟时间td f ,将导致热击穿。这段延缓性失效时间为微秒级。

图6给出不同短路续时间TSC,IGBT测量的短路电流波形。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭