当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于视觉与超声技术机器人自动识别抓取系统设计

视觉传感器是指具有从一整幅图像捕获光线的数发千计像素的能力,图像的清晰和细腻程度常用分辨率来衡量,以像素数量表示,邦纳工程公司提供的部分视觉传感器能够瞧捕获130万像素,因此,无论距离目标数米或数厘米元,传感器都能"看到"细腻的目标图像,视觉传感器应用其本要素是掌握如何应用视觉传感器的两个关键点的照明和软件工具。

超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。

1 系统原理与结构

系统由机械手、CCD 视觉传感器和超声波传感器及相应的信号处理单元等构成. CCD 安装在机械手末端执行器上,构成手眼视觉,超声波传感器的接收和发送探头也固定在机器人末端执行器上,由CCD 获取待识别和抓取物体的二维图像,并引导超声波传感器获取深度信息. 系统结构如图1 所示.

图像处理主要完成对物体外形的准确描述,包括以下几个步骤:a. 图像边缘提取;b. 周线跟踪;c. 特征点提取; d. 曲线分割及分段匹配;e. 图形描述与识别.在提取物体图像边缘后, 采用周线跟踪进行边缘细化,去除伪边缘点及噪声点,并对组成封闭曲线的边缘点进Freeman 编码,记录每一条链码方向和曲线上各点的X-Y 坐标值,进一步对物体的几何特性进行分析.CCD 获取的物体图像经处理后,可提取对象的某些特征,如物体的面积、曲率、边缘、角点及短轴方向等. 根据这些特征信息,可得到对物体形状的基本描述,在图像处理的基础上,由视觉信息引导超声波传感器对待测点的深度进行测量,获取物体的深度信息,扫描得到距离曲线,根据距离曲线分析出工件的边缘或外形.

2 工件图像边缘的提取

复杂工件反映在图像上常常不止一个灰度等级,仅利用一个灰度阈值无法提取有意义的边缘.

这里采用了直接从灰度图像提取边缘的方法.图像边缘一般发生在灰度函数值不连续处,可用灰度函数的一阶或二阶导数求得. 经典的利用一阶导数提取边缘的方法有Robert s 算子、So2bel 算子等, 利用二阶导数提取边缘的方法有Laplacian 算子和Marrs2Hilderth 算子等. 通过对几种算法的分析比较,认为Sobel 算子不仅实现容易、运算速度快,而且可提供最精确的边缘方向估计.Sobel 算子由两个3 ×3 相差90°的算子构成,由这两个算子同图像卷积, 可得到图像的边缘及其方向. 对于数字图像{ f ( i , j ) } , Sobel 算子可表示为:

Gx ( i , j) = f ( i - 1 , j - 1) +2 f ( i - 1 , j) + f ( i - 1 , j + 1) - f ( i + 1 ,j - 1) - 2 f ( i + 1 , j) - f ( i + 1 , j + 1) ;

Gy ( i , j) = f ( i - 1 , j - 1) +2 f ( i , j - 1) + f ( i + 1 , j - 1) - f ( i - 1 ,j + 1) - 2 f ( i , j + 1) - f ( i + 1 , j + 1) .

采用G1 = | Gx | + | Gy| 得到梯度幅值后,为减少所抽取的边缘数目,可设置一个幅度门限,即只考虑对应灰度变化较大的那些边缘. 再利用边缘点具有局部幅度最大的特点,将边缘细化.利用Sobel 算子提取边缘后, 为了得到工件表面的尺寸信息, 还必须提取图像的角点 , 以便计算工件的边长等特征信息.

2. 1 形心坐标的确定

图像中形心点的计算通常可通过两种方法得出, 一是通过区域处理求矩的方法计算形心坐标 ;二是通过边缘链码积分计算。该算法较为简单,且对任意图形都适用,但需要结合像素点隶属区域划分算法进行.

2. 2 轴向的确定

为使机械手能以正确的姿态准确地抓取物体,必须精确确定物体的轴向. 在几何学中,物体的长轴定义为通过物体形心点的一条直线, 物体关于该直线的二阶矩为最小值. 设图像中物体长轴与图像平面X 轴正方向夹角为θ, 规定| θ| ≤π/ 2 ,则物体关于该轴线的二阶矩为

  

 该算法较为简单,且对任意图形都适用,但需要结合像素点隶属区域划分算法进行.

很明显,基于二阶惯性矩的轴向确定方法是对整个物体区域进行运算, 且必须先确定像素点的隶属区域,故运算量较大. 图2 (a) 是用该算法确定的工件轴向. 对于一些简单形状的物体,可采用如下简单轴向估计算法:

a. 确定物体的形心坐标;

b. 确定物体边缘轮廓闭合曲线前半段中离物体形心最近的点, 用最小二乘法估算该点的切线方向,设其与图像平面X 轴正方向夹角为α1 ;

c. 用同样方法确定下半段曲线中对应的切线方向α2 ;

d. 物体轴向可粗略估计为θ= (α1 +α2) / 2.

图2 ( b) 是采用简化算法得到的工件轴向图. 该算法仅对物体边缘轮廓点进行处理,使运算时间大为减少.

3 超声深度检测

本文采用超声波测距传感器, 经图像处理得到工件的边缘、形心等特征量后,引导机械手到达待测点,对工件深度进行测量,并融合视觉信号与超声信号,可得到较完整的工件信息.安装在机器人末端执行器上的超声波传感器由发射和接收探头构成,根据声波反射的原理,检测由待测点反射回的声波信号,经处理后得到工件的深度信息.

4 实验结果及结论

在上述方法研究的基础上, 完成了在MOVEMASTER2EX机器人装配作业平台上进行的物体识别与抓取实验. 在自然光及一般照明条件下,对机器人装配作业平台上视场范围内任意放置的3~5 个不同形状、大小的典型工件进行自动识别和抓取,结果表明,识别时间小于5 s(包括识别、定位与抓取过程机械手的移动时间) ,定位误差小于±2 mm ,并具有较好的通用性和可移植性. 图3 (a) ~ (d) 分别是待抓取工件识别过程的图像.

结论: 采用本文提出的将机器人手- 眼视觉与超声波测距相结合的检测装置, 以及融合二维图像信息与深度信息进行工件识别与抓取的方法,具有算法简单、计算量小、可靠性高等特点,可为机器人与环境交互提供物体形状、类别以及大小等信息,使机器人装配作业能适应各种复杂的环境与工艺过程,对实现工业生产过程的自动化、柔性化、智能化有良好的应用前景.

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭