当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]一种通用型JTAG调试器的设计

System-ON-a-Programmable-Chip,即可编程片上系统。 用可编程逻辑技术把整个系统放到一块硅片上,称作SOPC。可编程片上系统(SOPC)是一种特殊的嵌入式系统:首先它是片上系统(SOC),即由单个芯片完成整个系统的主要逻辑功能;其次,它是可编程系统,具有灵活的设计方式,可裁减、可扩充、可升级,并具备软硬件在系统可编程的功能。SOPC它是用可编程逻辑技术把整个系统放到一块硅片上,来用于嵌入式系统的研究和电子信息处理。 SOPC是一种特殊的嵌入式系统,它是片上系统(SOC),即由单个芯片完成整个系统的主要逻辑功能但它不是简单的SOC,它也是可编程系统,具有灵活的设计方式,可裁减、可扩充、可升级,并具备软硬件在系统可编程的功能。

SOPC设计技术涵盖了嵌入式系统设计技术的全部内容,除了以处理器和实时多任务操作系统(RTOS)为中心的软件设计技术、以PCB和信号完整性分析为基础的高速电路设计技术以外,SOPC还涉及目前以引起普遍关注的软硬件协同设计技术。由于SOPC的主要逻辑设计是在可编程逻辑器件内部进行,而BGA封装已被广泛应用在微封装领域中,传统的调试设备,如:逻辑分析仪和数字示波器,已很难进行直接测试分析,因此,必将对以仿真技术为基础的软硬件协同设计技术提出更高的要求。同时,新的调试技术也已不断涌现出来,如Xilinx公司的片内逻辑分析仪Chip Scope ILA就是一种价廉物美的片内实时调试工具。

本文利用SOPC技术的特点,设计一种通用型调试器。根据待调试目标板的CPU型号,将相应的调试IPcore和其他通用IPcore一起编译生成一个嵌入式调试系统,下载到FPGA上,实现一个通用型调试器。在使用同一个硬件系统的情况下,可以选择不同的调试IPcore来调试不同的CPU,而不同的IPcore可以方便的互相替换。

1 JTAG调试原理

JTAG是英文“Joint Test Action Group(联合测试行为组织)”的词头字母的简写,该组织成立于1985 年,是由几家主要的电子制造商发起制订的PCB 和IC 测试标准。JTAG 建议于1990 年被IEEE 批准为IEEE1149.1-1990 测试访问端口和边界扫描结构标准。该标准规定了进行边界扫描所需要的硬件和软件。自从1990 年批准后,IEEE 分别于1993 年和1995 年对该标准作了补充,形成了现在使用的IEEE1149.1a-1993 和IEEE1149.1b-1994。JTAG 主要应用于:电路的边界扫描测试和可编程芯片的在线系统编程。

目前在线仿真调试器中使用最多的调试方法都是基于JTAG标准。1986年,联合测试行动组发表了最早的边界扫描测试规范(Boundary Scan Testing),经不断改进,1990年被批准为IEEE Std 1149.1a标准,简称JTAG标准。现在大多数复杂的IC芯片都带有JTAG调试接口。

JTAG调试原理的基础是边界扫描测试。它通过在芯片的每个I/0脚附加一个边界扫描单元(BoundaryScan Cell,BSC)以及一些附加的测试控制逻辑来实现。每个BSC有两个数据通道:一个是测试数据通道——测试数据输入TDI(Test Data Input)、测试数据输出TD0(Test Data 0utput);另一个是正常数据通道——正常数据输入NDI(Normal Data Input)、正常数据输出ND0(Normal Data Output)。在正常工作状态,输入和输出数据可以自由通过每个BSC,正常工作数据从NDI进,从NDO出。在测试状态,可以选择数据流动的通道:对于输入引脚,可以选择从NDI或从TDI输入数据;对于输出引脚,可以选择从BSC输出数据至NDO或至TDO。

JTAG控制器主要由3部分组成:测试端口控制器(Test Access Port,TAP)、指令寄存器和数据寄存器。其中,TAP控制器是JTAG的核心控制器,需要以下5个控制信号:TCK(边界扫描时钟)、TMS(JTAG测试模式选择)、TDI(串行边界扫描输入数据)、TDO(串行边界扫描输出数据)和TRST(JTAG测试逻辑复位)。TAP控制器的状态机如图1所示。

2 系统设计与实现

2.1 硬件设计与实现

本文采用A1tera的FPGA器件实现了图2所示的硬件结构。

上图列出了所需要的各类IPcore,其中大部分在Altera的开发包中可以找到,主要包括:

Nios II/f CPU,50 MHz,Altera提供的免费软核CPU。

Avalon总线,用于数据通信。

Flash控制器,用于控制和操作Flash芯片。Flash芯片中静态存放操作系统、1wIP协议栈及其他调试代码。本系统中使用的Flash芯片为Am29LVl60D,容量为2MB。

SDRAM控制器,用于控制和操作SDRAM芯片。SDRAM芯片用于动态执行调试程序。本系统中使用的SDRAM芯片为三星公司的K4S640432,容量为8 MB。

Ethernet控制器,用于控制和操作网卡芯片。仿真器使用这个以太网口与PC部分的集成开发环境通信。本系统中使用的网卡芯片为LAN91C111。

ARM7TDMI JTAG IPcore,仿真调试IPcore,需要自主开发。其内部逻辑用Verilog语言实现,然后按照Altera IPcore的标准编写IPcore描述文件,最后挂在三态总线上,完成全部调试功能。

TCK发生器,TCK脉冲产生逻辑,需要自主开发。它利用Nios的时钟生成TCK信号,作为时钟来驱动ARM7TDMI JTAG IPcore。它被做成一个小的功能模块,通过PIO与三态总线通信。

上述所介绍的IPcore使用Altera公司的开发工具Quartus II编译,最后下载到Altera FPGA中。本系统使用的CPGA芯片是Cyclone系列的EPlCl2。该芯片包含12 060个逻辑单元,具有239 616位RAM,片上集成2个锁相环,最大用户I/O引脚达到249个。

该硬件结构很好地体现了SOPC的概念,所有的IPcore(包括Altera公司发布和自主开发的)集成在一片FPGA上。一个片上系统就基本包含了在线仿真器的绝大部分功能,任何硬件结构设计的变化都在该片FPGA上,这使得通用在线仿真器这个概念得以实现。对其他芯片在线仿真,只需更改ARM7TDMI JTAG IPcore模块,重新下载到FPGA中,便可以对另一种处理器芯片进行在线仿真。该IPcore用Verilog语言实现,保存为armjtag.v文件。通过Quartus II里的SOPC Builder可以将该文件生成组件,再将其加入Nios系统中。

2.2 软件设计与实现

本系统的软件部分包括2个模块:一是PC端的开发调试界面,二是调试器里面的控制程序。2个模块通过TCP/IP协议通信。

PC端开发调试界面的主要功能是接收用户的调试命令,并显示调试结果。这是系统与用户进行交互的唯一方式。开发调试界面对上给用户提供统一的调试功能接口,对下给调试器提供统一的调试命令。本系统使用VisualC++开发。

调试器是自从计算机诞生伊始就始终伴随着程序员的一个挚友,起初的调试器都是基于硬件直接实现的。直到计算机行业有了比较突出的发展之后,商业化的软件调试器才与计算机程序编写工作人员们见面。作为软件维护与错误修正的一个最重要、最直接,也是必不可少的一种机制,中央处理器制造商也在不厌其烦地在CPU物理结构上支持着调试这种行为。调试器里的控制程序主要功能是将上层用户调试命令转换成特定的JTAG指令序列,并控制IPcore将其发送出去,同时接收JTAG反馈信息并发送回用户界面。本系统使用Nios IDE来开发。在Nios IDE的工程属性中加入LwIP和μC/OS组件。主程序首先初始化μC/0S,初始化LwIP协议栈,再启动μC/OS。所有程序控制放在μC/OS的OSStart()任务里。该任务首先建立一个套接字,然后在死循环中等待数据到来。当收到来自PC端的调试命令后,从数据包中分离出命令字和参数,将命令字转换成IPcore需要的调试命令,通过Avalon总线将其发送到IPcore,并等待IPcore工作完成。最后将IPcore传回的数据打包发回PC端。

目前提供的通用调试命令如表1所列。

在TCP/IP数据包中,有效数据为12字节。第1至4字节是命令代码,第5至8字节为命令参数1,第9到12字节为命令参数2。命令参数1和命令参数2是否有效取决于命令代码。主控制程序收到数据包后,将命令代码发往JTAG IPcore的指令端口地址,并根据命令代码向参数端口地址发送命令参数1。

在SOPC的硬件系统设计中,所有的外设都是统一编址。将JTAG IPcore的指令端口地址和参数端口地址分别设置成0x00910850和0x00910860,端口位宽为32位。因此在程序里,往IPcore发送指令只需要往地址0x00910850写32位数据;往IPcore发送参数只需要往地址Ox00910860写32位数据。反馈数据端口地址设置成Ox00910870,端口位宽为32位。

2.3 JTAG IPcore的实现

JTAG IPcore是本调试器的核心,下面简单介绍一下该部分的实现。

IPcore的接口如图3所示。

该IPcore的对外接口由两部分组成:一是与Avalon总线通信的接口部分,即图中的左边部分;二是与被调试CPU通信的接口部分,即图中的右边部分。另外,在整个实现中,定义了一些重要的寄存器。

“reg[3000:O]tms,tdo"分别用来存放完成当前操作的tms序列和tdo序列。像访问存储器这样的操作需要很长的tms序列和tdo序列,因此用了3001位。IPcore每次从这2个寄存器读取1位后,就向对应的引脚发送数据。tdi寄存器只用了134位,因为不是每个tdi输入对JTAG调试都有用。parmreg寄存器用来存放总线上传来的参数。tdidata寄存器用来存放从tdi引脚读取的有效数据,将被发送到Avalon总线。

Avalon总线上来的指令发送到ins[31:0]端口。在调试器主程序里判断指令,做出相应的动作。当IPcore读取到某个指令后,根据命令代码查找对应的TMS命令序列,找到以后将命令序列送到tms寄存器。同时,通过parm[31:O]端口读取命令参数,根据命令参数生成对应的TDO序列,将其送到tdo寄存器。当两个寄存器的内容准备好后,在TCK时钟的控制下,通过TMS引脚和TD0引脚分别串行输出。在TDO引脚输出的同时检测TDI引脚,并在适当时机将TDI引脚上的数据读入IPcore,经过处理后发送回总线。

由于TMS序列长度较长且其对应于各个调试命令是固定不变的,因此在本设计中,将TMS序列作成一个表,存放在IPcore里,而不是通过总线发送。需要时,根据不同的命令代码来读取。

结 语

本文介绍了一个基于SOPC的通用调试器的设计方案与实现过程。在开发过程中,IP复用、软硬件协同设计等先进的嵌入式设计思想对缩短开发时间、降低开发风险起到了很好的作用。同时,自主开发的ARM7TDMIJTAG IPcore和C8051 JTAG IPcore体现了该调试器的通用性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭