当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于ARM单片机PLC的音频分析仪设计

0 引言

随着微电子和信息技术的快速发展,以单片机为代表的数字技术发展日新月异。单片机由于具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,而广泛应用于各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理。事实上,通过采用单片机来进行控制,可以实现仪器仪表的数字化、智能化和微型化。本文通过对比选择采用了LPC2148芯片解决方案来实现音频分析仪的设计。

1 系统分析与选择

1.1 信号处理原理分析

在对音频信号进行分析的过程中,本文采用了快速傅立叶变换FFT算法,即首先对音频信号进行离散化处理,然后进行FFT运算,求出信号各个离散频率点的功率数值,并得到离散化的功率谱,最后在频域计算被测音频信号的总功率。

1.2 系统的选择

在处理器的选择上,通常可以选择8位、16位或者是32位的MCU。但是,由于在处理信号的过程中,通常会用到快速傅立叶变换FFF算法,所以需要进行大量的浮点运算,而且一个浮点要占用四个字节,故在处理过程要占用大量的内存,同时浮点运算时间也很慢,所以采用普通的8位MCU和16位MCU一般难以在一定的时间内完成运算。综合考虑系统内存的大小以及运算速度,本系统选用Philips公司的32位单片机LPC2148。该芯片具有32 KB的RAM,而时钟频率高达60 MHz,所以,对于浮点运算,不论是在速度上,还是在内存上都能够很快的处理。在信号采样方式上,由于本系统所选用的32位MCU芯片LPC2148是60 MHz的单指令周期处理器,定时精度为16.7 ns,可以实现40.96 kHz的采样率,而且控制方便,成本便宜,所以,本设计由MCU进行直接采样,而不采用DDS芯片配合FIFO对信号进行采集。

2 系统设计

2.1 总体设计

在系统总体设计中,音频信号的采样过程非常关键。当音频信号经过一个由运放和电阻组成的匹配网络进行采样时,首先要由量程控制模块对信号进行处理,如果信号电压在100 mV~5 V的范围内选择直通,也就是不对信号进行衰减或者放大控制,则可减少误差。但是,当信号强度太小时,12位的A/D转换器在2.5 V参考电压下的最小分辨率为1 mV左右,这时如果选择直通,其离散化处理的误差将会非常大。因此,当采集到信号后,若发现其强度太小,如在20~250 mV之间,这时就应该将其认定为弱信号,故应对其经过增益放大器放大之后再进行A/D采样。

经过12位A/D转换器ADS7819转换后的数字信号可由32位LPC2148进行FFT变换和处理,以分析其频谱特性和各个频率点的功率值,然后将这些值送到Atmega16进行显示控制。信号由32位LPC2148分析后,可判断其周期性,可由Atme-gal6进行测量,然后在LCD显示屏上显示,其功能框图如图1所示。

2.2 放大电路设计

当信号输入后,首先要根据信号强弱进行放大处理,图2所示是其放大电路原理图。该放大电路通过R1和R2两个电阻和一个高精度仪表运放AD620实现跟随功能,并在进行阻抗匹配后。通过继电器控制来决定是将信号直接送给AD转换还是放大后再进行AD转换。

由于需要对音频信号的频率及其功率进行检测,并且要测量正弦信号的失真度,因此要求在对小信号进行放大时,要尽可能少的引入信号的放大失真。正弦信号的理论计算失真度为0,对引入的信号失真非常灵敏,所以,本设计选择了低噪声、低失真的仪表放大器INA217,以将失真度控制在1 kHz频率之内。

2.3 AD转换电路设计

本系统采用12位AD转换器ADS7819来对信号进行转换,并将转换的数据送往32位控制器进行处理,其转换电路原理图如图3所示。
 

3 软件设计

由于系统主控芯片LPC2148的处理速度比较快,所以,软件设计采用C语言来进行编程比较简单快捷,其软件设计流程图如图4所示。

4 结果分析

笔者对本系统的音频信号进行了测量,并得到了如表1所列的数据。由于实验室能够模仿的音频信号只有正弦信号,所以,实验采用信号发生器来产生正弦信号,然后对其进行测量和误差分析,根据时域和频域的测量结果可以发现,其测量误差在5%的范围之内,且没有发现明显失真,基本可以满足实验的测量要求。

5 结束语

经过实验检验,本系统架构设计合理,功能电路较好,系统性能优良、稳定,系统设计基本可以满足音频分析的基本要求,且误差较小。但是,由于音频信号有多个频点,没有一定的规律性,因而导致测量过程中音频信号波动较大,这一点在应用过程中,还要对系统进行进一步的改进和完善。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭