发电机失磁、振荡、失步的区别
扫描二维码
随时随地手机看文章
发电机失磁
运行中,由于励磁回路开路、短路、励磁电流小时或转子回路故障所引起的发电机失磁后,发电机及励磁系统的相关表记反应如下:
(1). 转子电流表、电压表指示零或接近于零;
(2). 定子电压表指示显著降低;
(3). 电子电流表指示升高并晃动;
(4). 发电机有功功率表的指示降低并摆动;
(5). 发电机有功功率表的指示负值。
发电机在运行中失去励磁电流,使转子的磁场消失,这种可能是由于励磁开关误跳闸,励磁机或半导体励磁系统发生故障,转子回路断线等原因引起。当失磁发生后,转子磁场消失了,电磁力矩减少,出现过剩力矩,脱离同步,转子与定子有相对速度,定子磁场以转差速度切割转子表面,使转子表面感应出电流来。这个电流与钉子旋转磁场作用就产生了一个力矩,常称为异步力矩,这个异步力矩在这里也是个阻力矩,它起制动作用,发电机转子便在克服这个力矩的过程中做了功,使机械能变成电能,可继续向系统送出无功,发电机的转速不会无限制升高的,因为转速越高,这个异步力矩越大。这样,同步发电机就相当于变成了异步发电机。
在异步状态下,电机从系统吸收无功,供定子而后转子产生磁场,向系统送出无功,如果这台电机在很小的转差下就能产生很大的异步力矩,那么失磁状态下还能带较大的负荷,甚至所带负荷不变。这种状态要注意两点:一是定子电流不能超过额定值;二是转子部分温度不能超过允许值。
那么发电机失磁后有何不良影响呢?这个问题要分为两方面来阐述:一是对本身发电机的影响,二是对系统的危害。
对发电机的危害,主要表现在以下几个方面:
(1). 由于转差的出现,在转子表面将感应出差频电流。差频电流在转子回路中产生附加损耗,使转子发热加大,严重时可使转子烧损。特别是直接冷却高利用率的大型机组,其热容量裕度相对降低,转子容易过热;
(2). 失磁发电机转入异步运行后,发电机的等效电抗降低,由系统向发电机送出的无功功率增大。失磁前带的有功功率越大。转差也越大,等效电抗越小,由系统送出的无功也越大。因此在重负荷下失磁,由于定子绕组过电流,将使发电机定子过热;
(3). 异步运行中,发电机的转矩有所变化,因而有功功率要发生严重的周期性变化,使发电机、转子和基座受到异常的机械力的冲击,使机组的安全受到威胁;
发电机失磁后,对系统的影响表现如下:
(1). 失磁后的发电机,将从电力系统吸取相当于额定容量的无功功率,引起电力系统的电压下降。如果电力系统无功功率储备容量不足,将使邻近失磁发电机的部分系统电压低于允许值,威胁负载及各电源间的稳定运行,甚至导致系统的电压崩溃而瓦解,这是发电机失磁所导致的最严重的后果;
(2). 一台发电机失磁引起系统的电压下降,将使邻近的发电机励磁调节器动作而增大其无功输出,因而这些发电机、变压器和线路引起过电流,导致大面积停电,扩大故障的波及范围。
发电机在失磁(无励磁情况)后,运行人员应该如何处理?
发电机在无励磁情况下将异步运行,从试验情况来看,机组能可以带负荷运行,但只为额定容量的50%—60%,中小型机组运行时间不超过30min,大型机组(200MW以上)只能运行15min。
大型机组都装有失磁保护装置。失磁保护装置内设有电压断线闭锁装置和低电压继电器。当低电压继电器不动作时(母线电压不低于允许值),失磁保护不会动作。
(1). 当发电机失磁后,失磁保护动作,“发电机失磁保护跳闸”信号发出,发电机主开关跳闸,表明保护已动作解列灭磁,按发电机事故跳闸处理(第一时间检查厂用电切换情况);
(2). 若失磁保护拒动,则立即手动解列发电机;
(3). 在发电机失磁过程中,应注意调整好其他正常运行的发电机定子电流和无功功率。
发电机振荡
引起发电机振荡的主要原因有:负荷突变;二电源之间输出线路和变压器的切除;发电机特别是大容量机组突然跳闸;原动机输入力矩突然变化;系统突然发生短路故障等。短路故障通常是引起发电机振荡的主要原因。
同步发电机正常运行时,定子磁极和转子磁极之间可看成有弹性的磁力线联系。当负载增加时,功角将增大,这相当于把磁力线拉长;当负载减小时,功角将减小,这相当于磁力线缩短。当负载突然变化时,由于转子有惯性,转子功角不能立即稳定在新的数值,而是在新的稳定值左右要经过若干次摆动,这种现象称为同步发电机的振荡。
振荡有两种类型:一种是振荡的幅度越来越小,功角的摆动逐渐衰减,最后稳定在某一新的功角下,仍以同步转速稳定运行,称为同步振荡;另一种是振荡的幅度越来越大,功角不断增大,直至脱出稳定范围,使发电机失步,发电机进入异步运行,称为非同步振荡。
发电机振荡或失步时的现象
a)定子电流表指示超出正常值,且往复剧烈运动。这是因为各并列电势间夹角发生了变化,出现了电动势差,使发电机之间流过环流。由于转子转速的摆动,使电动势间的夹角时大时小,力矩和功率也时大时小,因而造成环流也时大时小,故定子电流的指针就来回摆动。这个环流加上原有的负荷电流,其值可能超过正常值。
b)定子电压表和其他母线电压表指针指示低于正常值,且往复摆动。这是因为失步发电机与其他发电机电势间夹角在变化,引起电压摆动。因为电流比正常时大,压降也大,引起电压偏低。
c)有功负荷与无功负荷大幅度剧烈摆动。因为发电机在未失步时的振荡过程中送出的功率时大时小,以及失步时有时送出有功,有时吸收有功的缘故
d)转子电压、电流表的指针在正常值附近摆动。发电机振荡或失步时,转子绕组中会感应交变电流,并随定子电流的波动而波动,该电流叠加在原来的励磁电流上,就使得转子电流表指针在正常值附近摆动。
)频率表忽高忽低地摆动。振荡或失步时,发电机的输出功率不断变化,作用在转子上的力矩也相应变化,因而转速也随之变化。.
f)发电机发出有节奏的鸣声,并与表计指针摆动节奏合拍。
g)低电压继电器过负荷保护可能动作报警。
h)在控制室可听到有关继电器发出有节奏的动作和释放的响声,其节奏与表计摆动节奏合拍。
i)水轮发电机调速器平衡表指针摆动;可能有剪断销剪断的信号;压油槽的油泵电动机起动频繁。
发电机振荡和失步的原因
根据运行经验,引起发电机振荡和失步的原因有
a)静态稳定破坏。这往往发生在运行方式的改变,使输送功率超过当时的极限允许功率。
)发电机与电网联系的阻抗突然增加。这种情况常发生在电网中与发电机联络的某处发生短路,一部分并联元件被切除,如双回线路中的一回背断开,并联变压器中的一台被切除等。
电力系统的功率突然发生不平衡。如大容量机组突然甩负荷,某联络线跳闸,造成系统功率严重不平衡。
d)大机组失磁。大机组失磁,从系统吸收大量无功功率,使系统无功功率不足,系统电压大幅度下降,导致系统失去稳定
e)原动机调速系统失灵。原动机调速系统失灵,造成原动机输入力矩突然变化,功率突升或突降,使发电机力矩失去平衡,引起振荡
f)发电机运行时电势过低或功率因数过高。
g)电源间非同期并列未能拉入同步。
单机失步引起的振荡与系统性振荡的区别
a)失步机组的表计摆动幅度比其他机组表计摆动幅度要大;
b)失步机组的有功功率表指针摆动方向正好与其他机组的相反,失步机组有功功率表摆动可能满刻度,其他机组在正常值附近摆动。
系统性振荡时,所有发电机表计的摆动是同步的。
当发生振荡或失步时,应迅速判断是否为本厂误操作引起,并观察是否有某台发电机发生了失磁。如本厂情况正常,应了解系统是否发生故障,以判断发生振荡或失步的原因。发电机发生振荡或失磁的处理如下:
a)如果不是某台发电机失磁引起,则应立即增加发电机的励磁电流,以提高发电机电动势,增加功率极限,提高发电机稳定性。这是由于励磁电流的增加,使定、转子磁极间的拉力增加,削弱了转子的惯性,在发电机达到平衡点时而拉入同步。这时,如果发电机励磁系统处在强励状态,1min内不应干预。
b)如果是由于单机高功率因数引起,则应降低有功功率,同时增加励磁电流。这样既可以降低转子惯性,也由于提高了功率极限而增加了机组稳定运行能力。
c)当振荡是由于系统故障引起时,应立即增加各发电机的励磁电流,并根据本厂在系统中的地位进行处理。如本厂处于送端,为高频率系统,应降低机组的有功功率;反之,本厂处于受端且为低频率系统,则应增加有功功率,必要时采取紧急拉路措施以提高频率。
d)如果是单机失步引起的振荡,采取上述措施经一定时间仍未进入同步状态时,可根据现场规程规定,将机组与系统解列,或按调度要求将同期的两部分系统解列。
以上处理,必须在系统调度统一指挥下进行