当前位置:首页 > 模拟 > 模拟
[导读]这节我们主要了解半导体的导电特性。理解PN结及其单向导电性。熟悉半导体二极管的伏安特性及主要参数。熟悉稳压管工作原理、伏安特性及主要参数。深刻理解晶体管的电流放大原理,熟悉输入和输出特性及主要参数。了解

这节我们主要了解半导体的导电特性。理解PN结及其单向导电性。熟悉半导体二极管的伏安特性及主要参数。熟悉稳压管工作原理、伏安特性及主要参数。深刻理解晶体管的电流放大原理,熟悉输入和输出特性及主要参数。了解场效应管的工作原理、转移特性、输出特性及主要参数。

1、半导体要求达到“识记”层次。

2、PN结,要求达到“领会”层次。

3、二极管,要求达到“领会”层次。

4、稳压管,要求达到“领会”层次。

5、晶体管,要求达到“领会”层次。

6、场效应管,要求达到“领会”层次。

重点:二极管、稳压管和晶体三极管。

难点:场效应管

1. 本征半导体

根据物体导电能力(电阻率)的不同划分为导体、绝缘体和半导体。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。

本征半导体是—种化学成分纯净、结构完整的半导体。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为"九个9"。它在物理结构上呈单晶体形态。

(1) 本征半导体的热敏性、光敏性和掺杂性

① 热敏性、光敏性—本质半导体在温度升高或光照情况下,导电率明显提高。

② 掺杂性—在本征半导体中掺入某种特定的杂质,成为杂质半导体后,其导电率会明显的发生改变。

(2) 电子空穴对

在绝对温度0K时,半导体中没有自由电子。当温度升高或受到光的照射时,将有少数电子能挣脱原子核的束缚而成为自由电子,流下的空位称为空穴,这一现象称为本征激发(也称热激发)。在本征半导体中自由电子和空穴是同时成对出现的,称为电子空穴对。游离的部分自由电子也可能回到空穴中去,称为复合。本征激发和复合在一定温度下会达到动态平衡。自由电子和空穴在半导体中都是导电粒子,称它们为载流子。

2. N型半导体和P型半导体

(1) N型半导体

在本征半导体中掺入五价杂质元素,例如磷,可形成N型半导体,也称电子型半导体。因五价杂质原子中只有四个价电子能与周围四个半导体原子中的价电子形成共价键,而多余的一个价电子因无共价键束缚而很容易形成自由电子。在N型半导体中自由电子是多数载流子(多子),它主要由杂质原子提供;空穴是少数载流子(少子), 由热激发形成。

(2)P型半导体

在本征半导体中掺入三价杂质元素,如硼、镓、铟等形成了P型半导体,也称为空穴型半导体。因三价杂质原子在与硅原子形成共价键时,缺少一个价电子而在共价键中留下一空穴。P型半导体中空穴是多数载流子,主要由掺杂形成;电子是少数载流子,由热激发形成。

根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。

半导体的电阻率为10-3~10-9 ??cm。

典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。

4.1.1 本征半导体及其导电性

本征半导体——化学成分纯净的半导体。

制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。它在物理结构上呈单晶体形态。

(1) 本征半导体的共价键结构

硅和锗是四价元素,在原子最外层轨道上的四个电子称为价电子。它们分别与周围的四个原子的价电子形成共价键。共价键中的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。这种结构的立体和平面示意图见图01.01。

 

 

(a) 硅晶体的空间排列 (b) 共价键结构平面示意图

图01.01 硅原子空间排列及共价键结构平面示意图

(2) 电子空穴对

当导体处于热力学温度0 K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子。这一现象称为本征激发(也称热激发)。

自由电子产生的同时,在其原来的共价键中就出现了一个空位,原子的电中性被破坏,呈现出正电性,其正电量与电子的负电量相等,人们常称呈现正电性的这个空位为空穴。可见因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。游离的部分自由电子也可能回到空穴中去,称为复合,如图01.02所示。本征激发和复合在一定温度下会达到动态平衡。

 

 

图01.02 本征激发和复合的过程

(3) 空穴的移动

自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,它们的方向相反。只不过空穴的运动是靠相邻共价键中的价电子依次充填空穴来实现的。

 

 

图01.03 空穴在晶格中的移动(动画1-2)

4.1.2 杂质半导体

在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺入杂质的本征半导体称为杂质半导体。

(1) N型半导体

在本征半导体中掺入五价杂质元素,例如磷,可形成N型半导体,也称电子型半导体。

因五价杂质原子中只有四个价电子能与周围四个半导体原子中的价电子形成共价键,而多余的一个价电子因无共价键束缚而很容易形成自由电子。在N型半导体中自由电子是多数载流子,它主要由杂质原子提供;空穴是少数载流子, 由热激发形成。

提供自由电子的五价杂质原子因带正电荷而成为正离子,因此五价杂质原子也称为施主杂质。N型半导体的结构示意图如图01.04所示。

 

 

图01.04 N型半导体的结构示意图

(2) P型半导体

在本征半导体中掺入三价杂质元素,如硼、镓、铟等形成了P型半导体,也称为空穴型半导体。

因三价杂质原子在与硅原子形成共价键时,缺少一个价电子而在共价键中留下一空穴。P型半导体中空穴是多数载流子,主要由掺杂形成;电子是少数载流子,由热激发形成。

空穴很容易俘获电子,使杂质原子成为负离子。三价杂质因而也称为受主杂质。P型半导体的结构示意图如图01.05所示。

 

 

图01.05 P型半导体的结构示意图

4.1.3 杂质对半导体导电性的影响

掺入杂质对本征半导体的导电性有很大的影响,一些典型的数据如下:

T=300K 室温下,本征硅的电子和空穴浓度为:

n = p =1.4×1010/cm3

本征硅的原子浓度: 4.96×1022 /cm3

掺杂后,N 型半导体中的自由电子浓度为: n=5×1016 /cm3

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭