当前位置:首页 > 模拟 > 模拟
[导读]1. 基本结构和类型半导体三极管的结构示意图如图1所示。它有两种类型:NPN型和PNP型。包含三层半导体:基区(相连电极称为基极,用B或b表示); 发射区(相连电极称为发射极,用E或e表示);集电区(相连电极称为集电极,用

1. 基本结构和类型

半导体三极管的结构示意图如图1所示。它有两种类型:NPN型和PNP型。包含三层半导体:基区(相连电极称为基极,用B或b表示); 发射区(相连电极称为发射极,用E或e表示);集电区(相连电极称为集电极,用C或c表示)。 E-B间的PN结称为发射结, C-B间的PN结称为集电结。

图1 两类三极管示意图及图形符号

2. 电流分配与放大

半导体三极管在工作时一定要加上适当的直流偏置电压。若在放大工作状态:发射结加正向电压,集电结加反向电压。现以 NPN型三极管的放大状态为例,来说明三极管内部的电流关系, 见图2

图2三极管的电流传输关系

发射结加正偏时,从发射区将有大量的电子向基区扩散,形成的电流为IEN。与PN结中的情况相同。从基区向发射区也有空穴的扩散运动,但其数量小,形成的电流为IEP。这是因为发射区的掺杂浓度远大于基区的掺杂浓度。 进入基区的电子流因基区的空穴浓度低,被复合的机会较少。又因基区很薄,在集电结反偏电压的作用下,电子在基区停留的时间很短,很快就运动到了集电结的边上,进入集电结的结电场区域,被集电极所收集,形成集电极电流ICN。在基区被复合的电子形成的电流是 IBN。 另外,因集电结反偏,使集电结区的少子形成漂移电流ICBO。于是可得如下电流关系式:

IE= IEN+ IEP 且有IEN>>IEP

IEN=ICN+ IBN 且有IEN>> IBN , ICN>>IBN

IC=ICN+ ICBO

IB=IEP+ IBN-ICBO

IE=IEP+IEN=IEP+ICN+IBN=(ICN+ICBO)+(IBN+IEP-ICBO)=IC+IB

3. 晶体管的特性曲线及主要参数

以共射NPN型晶体管放大电路为例。

输入特性曲线—— IB=f(UBE)|UCE常数

输出特性曲线—— IC=f(UCE)|IB=常数

(1)输入特性曲线

共发射极接法的输入特性曲线见图3。输入特性曲线的分区:死区、非线性区、线性区。

图3共发射极接法输入特性曲

(2)输出特性曲线

输出特性曲线分为三个区域:

饱和区--IC受UCE显著控制的区域,该区域内UCE的数值较小,一般UCE<0.7 V(硅管)。此时发射结正偏,集电结正偏或反偏电压很小。

截止区--IC接近零的区域,相当iB=0的曲线的下方。此时,发射结反偏,集电结反偏。

放大区--IC平行于UCE轴的区域,曲线基本平行等距。此时,发射结正偏,集电结反偏,电压大于0.7 V左右(硅管)。

图4共发射极接法输出特性曲线

(3)主要参数

半导体三极管的参数分为直流参数、交流参数和极限参数三大类。

① 共发射极电流放大系数

和β

共发射极直流电流放大系数

共发射极交流电流放大系数 β

② 极间反向饱和电流ICBO和ICEO

ICEO和ICBO有如下关系

③ 极限参数

● 集电极最大允许电流ICM

当集电极电流超过一定值时,β就要下降,当β值下降到线性放大区β值的2/3时,所对应的集电极电流称为集电极最大允许电流ICM。当IC>ICM时,并不表示三极管会损坏。

● 集电极最大允许功率损耗PCM

集电极电流通过集电结时所产生的功耗, PCM= ICUCB≈ICUCE,因发射结正偏,呈低阻,所以功耗主要集中在集电结上。在计算时往往用UCE取代UCB。

● 反向击穿电压U(BR)CEO

反向击穿电压U(BR)CEO,U(BR)CEO——基极开路时集电极和发射极间的击穿电压。

④ 温度对晶体管参数的影响

温度T↑→β↑、ICBO↑,|UBE|↓→IC ↑

半导体三极管有两大类型,一是双极型半导体三极管, 二是场效应半导体三极管

双极型半导体三极管是由两种载流子参与导电的半导体器件,它由两个 PN 结组合而成,是一种CCCS器件。 场效应型半导体三极管仅由一种载流子参与导电,是一种VCCS器件。

二、双极型半导体三极管

1 双极型半导体三极管的结构

双极型半导体三极管的结构示意图如图4所示。它有两种类型:NPN型和PNP型。中间部分称为基区,相连电极称为基极,用B或b表示(Base);

一侧称为发射区,相连电极称为发射极,用E或e表示(Emitter);

另一侧称为集电区和集电极,用C或c表示(Collector)。

E-B间的PN结称为发射结(Je),

C-B间的PN结称为集电结(Jc)。

图4两种极性的双极型三极管

双极型三极管的符号在图的下方给出,发射极的箭头代表发射极电流的实际方向。从外表上看两个N区(或两个P区)是对称的,实际上发射区的掺杂浓度大,集电区掺杂浓度低,且集电结面积大。基区要制造得很薄,其厚度一般在几个微米至几十个微米。

2 双极型半导体三极管的电流分配与控制

双极型半导体三极管在工作时一定要加上适当的直流偏置电压。若在放大工作状态:发射结加正向电压,集电结加反向电压。现以 NPN型三极管的放大状态为例,来说明三极管内部的电流关系, 见图5.

图5 双极型三极管的电流传输关系

发射结加正偏时,从发射区将有大量的电子向基区扩散,形成的电流为IEN。与PN结中的情况相同。从基区向发射区也有空穴的扩散运动,但其数量小,形成的电流为IEP。这是因为发射区的掺杂浓度远大于基区的掺杂浓度。

进入基区的电子流因基区的空穴浓度低,被复合的机会较少。又因基区很薄,在集电结反偏电压的作用下,电子在基区停留的时间很短,很快就运动到了集电结的边上,进入集电结的结电场区域,被集电极所收集,形成集电极电流ICN。在基区被复合的电子形成的电流是 IBN。

另外,因集电结反偏,使集电结区的少子形成漂移电流ICBO。于是可得如下电流关系式:

IE= IEN+ IEP 且有IEN>>IEP

IEN=ICN+ IBN 且有IEN>> IBN , ICN>>IBN

IC=ICN+ ICBO

IB=IEP+ IBN-ICBO

IE=IEP+IEN=IEP+ICN+IBN=(ICN+ICBO)+(IBN+IEP-ICBO)=IC+IB

以上关系在图02.02的动画中都给予了演示。由以上分析可知,发射区掺杂浓度高,基区很薄,是保证三极管能够实现电流放大的关键。若两个PN结对接,相当基区很厚,所以没有电流放大作用,基区从厚变薄,两个PN结演变为三极管,这是量变引起质变的又一个实例。

3 双极型半导体三极管的电流关系

(1) 三种组态

双极型三极管有三个电极,其中两个可以作为输入, 两个可以作为输出,这样必然有一个电极是公共电极。三种接法也称三种组态,见图6。

共发射极接法,发射极作为公共电极,用CE表示;

共集电极接法,集电极作为公共电极,用CC表示;

共基极接法,基极作为公共电极,用CB表示。

图6三极管的三种组态

(2) 三极管的电流放大系数

对于集电极电流IC和发射极电流IE之间的关系可以用系数来说明,定义:

称为共基极直流电流放大系数。它表示最后达到集电极的电子电流ICN与总发射极电流IE的比值。ICN与IE相比,因ICN中没有IEP和IBN,所以 的值小于1, 但接近1。由此可得:

称为共发射极接法直流电流放大系数。于是

4 双极型半导体三极管的特性曲线

本节介绍共发射极接法三极管的特性曲线,即

这里,B表示输入电极,C表示输出电极,E表示公共电极。所以这两条曲线是共发射极接法的特性曲线。

iB是输入电流,vBE是输入电压,加在B、E两电极之间。

iC是输出电流,vCE是输出电压,从C、E两电极取出。

共发射极接法的供电电路和电-压电流关系如图7所示。

图7 共发射极接法的电压-电流关系

(1)输入特性曲线

简单地看,输入特性曲线类似于发射结的伏安特性曲线,现讨论iB和vBE之间的函数关系。因为有集电结电压的影响,它与一个单独的PN结的伏安特性曲线不同。 为了排除vCE的影响,在讨论输入特性曲线时,应使vCE=const(常数)。vCE的影响,可以用三极管的内部的反馈作用解释,即vCE对iB的影响。

共发射极接法的输入特性曲线见图8。其中vCE=0V的那一条相当于发射结的正向特性曲线。当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收集电子,且基区复合减少, IC / IB增大,特性曲线将向右稍微移动一些。但vCE再增加时,曲线右移很不明显。曲线的右移是三极管内部反馈所致,右移不明显说明内部反馈很小。

图8共发射极接法输入特性曲线

输入特性曲线的分区:死区、非线性区、线性区。

(2)输出特性曲线

共发射极接法的输出特性曲线如图9所示,它是以iB为参变量的一族特性曲线。现以其中任何一条加以说明,当vCE=0 V时,因集电极无收集作用,iC=0。当vCE微微增大时,发射结虽处于正向电压之下,但集电结反偏电压很小,如vCE< 1 V;vBE=0.7 V; vCB= vCE- vBE≤0.7 V 。集电区收集电子的能力很弱,iC主要由vCE决定。当vCE增加到使集电结反偏电压较大时,如vCE ≥1 V, vBE ≥0.7 V,运动到集电结的电子基本上都可以被集电区收集,此后vCE再增加,电流也没有明显的增加,特性曲线进入与vCE轴基本平行的区域 (这与输入特性曲线随vCE增大而右移的原因是一致的) 。

输出特性曲线可以分为三个区域

饱和区——iC受vCE显著控制的区域,该区域内vCE的数值较小,一般vCE<0.7 V(硅管)。此时发射结正偏,集电结正偏或反偏电压很小。

截止区——iC接近零的区域,相当iB=0的曲线的下方。此时,发射结反偏,集电结反偏。

放大区——iC平行于vCE轴的区域,曲线基本平行等距。此时,发射结正偏,集电结反偏,电压大于0.7 V左右(硅管)

图9 共发射极接法输出特性曲线(动画2-2)

5 半导体三极管的参数

半导体三极管的参数分为直流参数、交流参数和极限参数三大类。

(1) 直流参数

① 直流电流放大系数

1.共发射极直流电流放大系数

在放大区基本不变。在共发射极输出特性曲线上,通过垂直于X轴的直线(vCE=const)来求取IC / IB ,如图02.07所示。在IC较小时和IC较大时,会有所减小,这一关系见图02.08。

2.共基极直流电流放大系数

显然 与 之间有如下关系

② 极间反向电流

1.集电极-基极间反向饱和电流ICBO

ICBO的下标CB代表集电极和基极,O是Open的字头,代表第三个电极E开路。它相当于集电结的反向饱和电流。

2.集电极-发射极间的反向饱和电流ICEO

ICEO和ICBO有如下关系

ICEO=(1+

)ICBO

相当基极开路时,集电极和发射极间的反向饱和电流,即输出特性曲线IB=0那条曲线所对应的Y坐标的数值,如图02.09所示。

图02.09 ICEO在输出特性曲线上的位置

(2) 交流参数

① 交流电流放大系数

1.共发射极交流电流放大系数?

在放大区, B值基本不变,可在共射接法输出特性曲线上,通过垂直于X轴的直线求取△IC/△IB。或在图02.08上通过求某一点的斜率得到?。具体方法如图02.10所示。

2.共基极交流电流放大系数α

 

当ICBO和ICEO很小时,可以不加区分。

② 特征频率fT

三极管的?值不仅与工作电流有关,而且与工作频率有关。由于结电容的影响,当信号频率增加时,三极管的?将会下降。当?下降到1时所对应的频率称为特征频率,用fT表示。

(3) 极限参数

① 集电极最大允许电流ICM

如图02.08所示,当集电极电流增加时,? 就要下降,当?值下降到线性放大区?值的70~30%时,所对应的集电极电流称为集电极最大允许电流ICM。至于?值下降多少,不同型号的三极管,不同的厂家的规定有所差别。可见,当IC>ICM时,并不表示三极管会损坏。

② 集电极最大允许功率损耗PCM

集电极电流通过集电结时所产生的功耗, PCM= ICVCB≈ICVCE,因发射结正偏,呈低阻,所以功耗主要集中在集电结上。在计算时往往用VCE取代VCB。

③ 反向击穿电压

反向击穿电压表示三极管电极间承受反向电压的能力,其测试时的原理电路如图02.11所示。

图02.11 三极管击穿电压的测试电路

1. V(BR)CBO——发射极开路时的集电结击穿电压。下标BR代表击穿之意,是Breakdown的字头,C、B代表集电极和基极,O代表第三个电极E开路。

2. V(BR)EBO——集电极开路时发射结的击穿电压。

3. V(BR)CEO——基极开路时集电极和发射极间的击穿电压。

对于V(BR)CER表示BE间接有电阻,V(BR)CES表示BE间是短路的。几个击穿电压在大小上有如下关系:

V(BR)CBO≈V(BR)CES>V(BR)CER>V(BR)CEO>V(BR)EBO

由最大集电极功率损耗PCM、ICM和击穿电压V(BR)CEO,在输出特性曲线上还可以确定过损耗区、过电流区和击穿区,见图02.12。

 

图02.12 输出特性曲线上的过损耗区和击穿区

2.1.6 半导体三极管的型号

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭