当前位置:首页 > 模拟 > 模拟
[导读]在很多电子论坛经常看见运放在单电源供电下,进行测量放大的电路,出现啥啥问题、不能正常工作等等。实际上其实这一切都是由于不同运放的不同输入结构造成的。在说明下面这个问题前,首先强调一下:对于单电源应用,

在很多电子论坛经常看见运放单电源供电下,进行测量放大的电路,出现啥啥问题、不能正常工作等等。

实际上其实这一切都是由于不同运放的不同输入结构造成的。

在说明下面这个问题前,首先强调一下:

对于单电源应用,我这里指的是"直流"放大应用,此时运放的输入端电位受输入信号的牵制,输入信号的直流电平直接影响到运放的输入端电位。

而对于放大交流信号,因为有输入、输出电容隔离,此时运放用啥电源都没有关系,所以不在此讨论话题内。

对于直流放大,因为没有了隔直电容,输入信号的直流电位就会直接影响到运放的工作点,如果运放输入端工作电压超出运放的Vicom这个参数范围,就不能正常工作了。

Vicom这个参数一般都有正负两个值,究竟是啥含义呢?以NE5532的Vicom参数为例:

从NE5532的内部结构知道

运放输入端必须要比Vee脚高2V以上,以便可以给公共恒流源提供工作电压。如果运放输入端接到Vee脚,那么差分管Vbe没有偏压,并且下面的公共恒流源电路也不能正常工作,运放也就工作在非正常状态了。所以得到Vicom的最小值极限就是必须比Vee高2V

同样可以推导到如果运放输入端接到Vcc,他也不能工作,也必须比Vcc低2V才能工作。所以Vicom的最大极限值就是比Vcc低2V。

所以我们看到NE5532的Vicomm有2个值,分别是正负13V,意思是在正负15V供电下(即Vcc=+15,Vee=-15V),运放差分输入端的电位必须要比Vee高(-13)-(-15)=2V以上,比Vcc低(+13)-(+15)=-2V。

再看看LM358的输入结构

是PNP达林顿输入结构,当输入端接到Vee脚(也即图中地),此时PNP管仍旧能正常工作。

而LM358的Vicom参数如下:

说明在单26V供电(Vee=GND,Vcc=26V)下,Vicom的最小值可以为0V,即允许输入端直接接到Vee脚。

但为啥叫称呼他们为单电源运放呢?

这主要是相对于输入信号的地来说的,

因为一般输入信号是以自己的地为参考信号的,当没有信号输入时,输入信号的直流电位肯定就是地电位0V了。

如果你的运放是双电源供电,即输入信号的地是接到VccVee正负电源的中间,那么即使没有输入信号,运放输入端电位仍旧能保证>Vee 和

如果你是单电源供电的的话,输入信号的地其实就是接到了运放的Vee脚。当没有信号时,运放的输入端也就是0电位了,也就是和Vee脚电位相同,此时一部分运放就不能正常工作了,例如上面的NE5532,他的输入端电位等于Vee脚时,当然不能正常工作了,所以对于ne5532来说,单电源下的直流放大是不能正常工作的。

但对于LM358,输入端电位等于Vee时,他仍旧能放大,

所以单电源运放就是指这一类Vicom的最小值等于Vee脚这一类的运放。

所以设计一个直流放大电路时,特别是在单电源下应用时,关键要注意输入信号相对于Vee脚的电压是否超出运放的Vicom范围。

总之单电源下使用,如果你能确保输入信号任何时候>满足Vicom,那么你用啥运放都可以,

例如某些电桥电路,其两个输入端一般肯定大于某个电压,那么即使用单电源供电,用非单电源的运放也可以。

很多人主要是没有注意到Vicom这个参数导致电路有问题。

既然有vicom达到Vee的运放,那么也有Vicom达到Vcc的运放,

我们再看看TL074的Vicom参数,

这种运放有什么用呢?这种运放用在高端电流检测最好用

例如很多人要检测某一路电源的电流情况,检测电流当然就要串入一个电阻啦,这个电阻可以串在电源高端,也可以串在电源低端。

串在低端的话,电源就不能和检测电路共用地了,这样有时引起不方便;

串在高端的话,很多人可能会用桥式检测电路,将R4上对地浮动的电压信号转变成对地的电压。但桥式电路对分压电阻的匹配程度非常非常高,通常很难做好。

但如果你用Vicom最大值达到Vcc的运放的话,可以用右图的电流变换电路,将R1上的负载电流转变成R3对地电压,其精度很高,稳定性很好。

如果运放的Vicom最大最小值范围是Vee和Vcc的话,这些运放就是Rail to input运放。

要实现Rail to input的话,运放输入结构肯定需要两个差分电路,例如互补全差分输入,互补P NMOS差分输入。这样才能达到rail to input的效果。

扩展阅读:运算放大器分类 、作用及运放的选型

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭