当前位置:首页 > 模拟 > 模拟
[导读]相信刚毕业的大学生,刚进单位犯错误是在所难免的,可能每个人都会有一个老师去带,如果你遇到了一个认真并且对你负责的老师带你,那我恭喜你,你的运气很好,因为一开始他对你的严格往往会使你受益终身。当然被别人

相信刚毕业的大学生,刚进单位犯错误是在所难免的,可能每个人都会有一个老师去带,如果你遇到了一个认真并且对你负责的老师带你,那我恭喜你,你的运气很好,因为一开始他对你的严格往往会使你受益终身。当然被别人批评永远是我们不愿意听到的,如果你既不想被老师批评,又想自己今后进步的很快,唯一的路径就是努力学习了。

前面说了一些自己经历的感受,下面我们开始说正题了。

相信对做硬件的工程师,毕业开始进公司时,在设计PCB时,老工程师都会对他说,PCB走线不要走直角,走线一定要短,电容一定要就近摆放等等。但是一开始我们可能都不了解为什么这样做,就凭他们的几句经验对我们来说是远远不够的哦,当然如果你没有注意这些细节问题,今后又犯了,可能又会被他们骂,“都说了多少遍了电容一定要就近摆放,放远了起不到效果等等”,往往经验告诉我们其实那些老工程师也是只有一部分人才真正掌握其中的奥妙,我们一开始不会也不用难过,多看看资料很快就能掌握的。直到被骂好几次后我们回去找相关资料,为什么设计PCB电容要就近摆放呢,等看了资料后就能了解一些,可是网上的资料很杂散,很少能找到一个很全方面讲解的。工作两年后,我看到了相关人士讲的相关文章。下面这篇文章是我转载于博士的一片关于电容去耦半径的讲解,相信你看了之后可以很牛x的回答和避免类似问题的发生。

老师 问: 为什么去耦电容就近摆放呢?

学生 答: 因为它有有效半径哦,放的远了失效的。

电容去耦的一个重要问题是电容的去耦半径。大多数资料中都会提到电容摆放要尽量靠近芯片,多数资料都是从减小回路电感的角度来谈这个摆放距离问题。确实,减小电感是一个重要原因,但是还有一个重要的原因大多数资料都没有提及,那就是电容去耦半径问题。如果电容摆放离芯片过远,超出了它的去耦半径,电容将失去它的去耦的作用。

理解去耦半径最好的办法就是考察噪声源和电容补偿电流之间的相位关系。当芯片对电流的需求发生变化时,会在电源平面的一个很小的局部区域内产生电压扰动,电容要补偿这一电流(或电压),就必须先感知到这个电压扰动。信号在介质中传播需要一定的时间,因此从发生局部电压扰动到电容感知到这一扰动之间有一个时间延迟。同样,电容的补偿电流到达扰动区也需要一个延迟。因此必然造成噪声源和电容补偿电流之间的相位上的不一致。

特定的电容,对与它自谐振频率相同的噪声补偿效果最好,我们以这个频率来衡量这种相位关系。设自谐振频率为f,对应波长为,补偿电流表达式可写为:

其中,A是电流幅度,R为需要补偿的区域到电容的距离,C为信号传播速度。

当扰动区到电容的距离达到时,补偿电流的相位为,和噪声源相位刚好差180度,即完全反相。此时补偿电流不再起作用,去耦作用失效,补偿的能量无法及时送达。为了能有效传递补偿能量,应使噪声源和补偿电流的相位差尽可能的小,最好是同相位的。距离越近,相位差越小,补偿能量传递越多,如果距离为0,则补偿能量百分之百传递到扰动区。这就要求噪声源距离电容尽可能的近,要远小于。实际应用中,这一距离最好控制在<!--[endif]-->之间,这是一个经验数据。

例如:0.001uF陶瓷电容,如果安装到电路板上后总的寄生电感为1.6nH,那么其安装后的谐振频率为125.8MHz,谐振周期为7.95ps。假设信号在电路板上的传播速度为166ps/inch,则波长为47.9英寸。电容去耦半径为47.9/50=0.958英寸,大约等于2.4厘米。

本例中的电容只能对它周围2.4厘米范围内的电源噪声进行补偿,即它的去耦半径2.4厘米。不同的电容,谐振频率不同,去耦半径也不同。对于大电容,因为其谐振频率很低,对应的波长非常长,因而去耦半径很大,这也是为什么我们不太关注大电容在电路板上放置位置的原因。对于小电容,因去耦半径很小,应尽可能的靠近需要去耦的芯片,这正是大多数资料上都会反复强调的,小电容要尽可能近的靠近芯片放置。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭