当前位置:首页 > 单片机 > 单片机
[导读] 一、用法经常会看到类似如下的宏定义语句,用于对已经初始化后的 IO 口输出高、低电平。#define SET_BL_HIGH() GPIOA->BSRR=GPIO_Pin_0#define SET_BL_LOW() GPIOA->BRR=GPIO_Pin_012其作用类似于如下两个库函数,v

 一、用法

经常会看到类似如下的宏定义语句,用于对已经初始化后的 IO 口输出高、低电平。

#define SET_BL_HIGH() GPIOA->BSRR=GPIO_Pin_0

#define SET_BL_LOW() GPIOA->BRR=GPIO_Pin_012

其作用类似于如下两个库函数,

void GPIO_SetBits(GPIO_Typedef* GPIOx, uint16_t GPIO_Pin)

void GPIO_ResetBits(GPIO_Typedef* GPIOx, uint16_t GPIO_Pin) 12

而且实际上这两个库函数就是通过修改BSRR,BRR寄存器的值来实现对 IO 口设置的。如下便是输出高电平的函数体:

void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

{

/* Check the parameters */

assert_param(IS_GPIO_ALL_PERIPH(GPIOx));

assert_param(IS_GPIO_PIN(GPIO_Pin));

GPIOx->BSRR = GPIO_Pin;

}12345678

因此,使用宏或者库函数本质上都是一样的。区别在于使用宏更快,而使用函数更灵活。

二、解释

BSRR 和 BRR 都是 STM32 系列 MCU 中 GPIO 的寄存器。 BSRR 称为端口位设置/清楚寄存器,BRR称为端口位清除寄存器。

BSRR 低 16 位用于设置 GPIO 口对应位输出高电平,高 16 位用于设置 GPIO 口对应位输出低电平。

BRR 低 16 位用于设置 GPIO 口对应位输出低电平。高 16 位为保留地址,读写无效。

所以理论上来讲,BRR 寄存器的功能和 BSRR 寄存器高 16 位的功能是一样的。也就是说,输出低电平的宏语句,可以有如下两种写法。

#define SET_BL_LOW() GPIOA->BRR=GPIO_Pin_0

等价于

#define SET_BL_LOW() GPIOA->BSRR=GPIO_Pin_0 << 16 123

这么来看的话,其实 BRR 寄存器是比较多余的。而实际上,在最新的 STM32F4 系列 MCU 的 GPIO 寄存器中,已经找不到 BRR 寄存器了,仅保留了 BSRR 寄存器用于实现端口输出高低电平。因此,在 STM32F4 系列 MCU 的库函数中,对 GPIO 口输出高低电平的函数为如下形式:

void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)

{

/* Check the parameters */

assert_param(IS_GPIO_PIN(GPIO_Pin));

assert_param(IS_GPIO_PIN_ACTION(PinState));

if(PinState != GPIO_PIN_RESET)

{

GPIOx->BSRR = GPIO_Pin;

}

else

{

GPIOx->BSRR = (uint32_t)GPIO_Pin << 16U;

}

}123456789101112131415

可见,不管是输出高还是输出低,都是对 BSRR 寄存器的操作。

三、BSRR、BRR、 ODR 之间的关系

配置 BSRR , BRR 是为了对端口输出进行配置,而 ODR 寄存器也是用于输出数据的寄存器,一个 ODR 寄存器控制了一组(16位)的 GPIO 输出。因此,对 ODR 进行修改也可以到达对 IO 口输出进行配置。

但是,由于对 ODR 寄存器的读写操作必须以 16 位的形式进行。因此,如果使用 ODR 改写数据以控制输出时,须采用“读-改-写”的形式进行。

假设需要对 GPIOA_Pin_6 输出高电平。采用改写 ODR 寄存器的方式时,使用“读-改-写”操作,代码如下:

uint32_t temp;

temp = GPIOA->ODR;

temp = temp | GPIO_Pin_6;

GPIOA->ODR = temp;1234

而使用改写 BSRR 寄存器时,仅需要使用如下语句:

GPIOA->BSRR = GPIO_Pin_6;1

这是因为在修改 ODR 时,为了确保对端口 6 的修改不会影响到其他端口的输出,需要对端口的原始数据进行保存,之后再对端口 6 的值进行修改,最后再写入寄存器。而对 BSRR 的操作,是写 1 有效,写 0 不改变原状态,因此可以对端口 6 置 1,其他位保持为 0。BSRR 为 1 的位,会修改相应的 ODR 位,从而控制输出电平。

对 BSRR 的操作可以实现原子操作。因此在设置单个 IO 口输出时,使用 BSRR 进行操作会更加方便。

但也有例外的时候,在需要对单个IO口进行 Toggle 操作时(即对当前输出取反输出,当前输出为高则输出低,当前输出低则输出高),官方的库函数就是直接对 ODR 寄存器进行操作的。代码如下:

void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

{

/* Check the parameters */

assert_param(IS_GPIO_PIN(GPIO_Pin));

GPIOx->ODR ^= GPIO_Pin;

}1234567

这是因为,0 和 1 与 1 进行异或操作被取反,0 和 1 与 0 进行异或操作保持原值。如下:

0 ^ 1 = 1

1 ^ 1 = 0

0 ^ 0 = 0

1 ^ 0 = 1

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭