当前位置:首页 > 单片机 > 单片机
[导读]在前面的文章中分别介绍了两种用普通单片机实现低成本A/D转换的方法,这两种方法中在单片机的外部都要使用到一个比较器,在本文中继续向大家介绍低成本的A/D转换的一种方法,只是这种方法成本会更低,而且外部无需使

在前面的文章中分别介绍了两种用普通单片机实现低成本A/D转换的方法,这两种方法中在单片机的外部都要使用到一个比较器,在本文中继续向大家介绍低成本的A/D转换的一种方法,只是这种方法成本会更低,而且外部无需使用比较器。此种方法的A/D转换精度不高,只有6~7bit,并且被测电压范围较为有限,但在某些精度要求不高,且被测电压值变化不大的场合也很有实用价值,比如温度测量方面。

其电路如图一所示:

 

其工作原理说明如下:

1、硬件说明:

图一中的R1、R2和C1构成RC充电电路,被测量通过R1、R2对C1充电。N1为单片机,本电路中采用MICROCHIP的PIC12C508A来举例说明。C2为给电源供电用的滤波电路,VD1为保护用稳压二极管,以避免输入电压过高而损坏单片机。

2、A/D转换过程:

首先GP5输出低电平,使电容C1上的电量完全放光,随后GP5即转变为输入状态,此时单片机开始计时,被测电压经过R1、R2电阻对电容C1进行充电,电容C1上的电压会逐渐升高,C1上的电压U满足以下公式:

 

 

其中U为电容C1上的电压,E为输入电压(被测量),T=(R1+R2)*C1,t为时间。

当C1上的电压U达到单片机I/O脚的门嵌电压时,单片机的GP5由低电平状态转变为高电平状态。记录从充电开始至此时所经过的时间t。

从上式可知,当单片机I/O脚的门嵌电压、R1、R2、C1值都固定不变时,被测量的电压值E与时间t呈一一对应关系。

因此测量输入电压对C1电容充电到门嵌电压的时间,进行查表计算,就可以得到被测电压值,从而实现了A/D转换。

3、A/D转换误差分析及解决办法:

A/D转换的误差主要由以下几个方面决定,分别说明如下:

(1)单片机的电源电压VDD:在该A/D转换中,VDD电压变化较大时有可能造成I/O口的门嵌电压发生变化,不过其影响较小。

(2)单片机内部的定时器对C1电容上电压上升时间的测量偏差:该测量偏差是A/D转换误差的主要因素。

(3)电阻、电容不稳定导致的误差:当电阻R1、R2或电容C1的值发生变化时,也会使C1电容的电压上升至门嵌电压时间发生变化,这也将影响A/D转换结果。

(4)单片机I/O脚的输入阻抗:如果单片机的I/O脚输入阻抗较低,相当于使RC值发生变化,也会影响A/D转换结果。

(5)单片机的门嵌电压:对于不同的单片机,其门嵌电压可能略有相同,这也会导致测量误差。

A/D转换误差的解决办法:

(1)对VDD造成的误差,只能通过提高VDD电压精度来解决,VDD的电压最好能稳定在2%范围内,普通的7805就有2%的稳压精度。

(2)对单片机内部的定时器产生的误差,可以增加RC值,从而使C1电容上电压上升时间延长,计数器测得的值较大,误差会较小。不过R值若太大,受I/O口输入阻抗影响也会较大。

(3)R1、C1选用精度较高较稳定的电阻、电容,或增加一个微调电阻器来解决。

(4)若单片机I/O脚输入阻抗较低,可以减小R1、R2电阻,增加C1电容来解决。

4、A/D转换速度及提高办法:

由于该A/D转换是通过被测值经过一个电阻对电容充电使电压到达门嵌电压后测量充电时间来得到A/D转换值的,因此其A/D转换速度会比较慢,它适用于对A/D转换速度要求不高的产品中,其A/D转换速度取决于以下几个方面:

(1)RC值:当RC值太大时,测量速度会较慢,减小RC值可以提高A/D转换速度,但由于计数时间较短,测量误差会增大。

(2)被测电压值的大小:由于C1上的电压U是由小到大逐渐加大的,当被测电压值较小时,U电压上升到门嵌值的时间就越长,完成A/D转换的速度就越慢。反之被测电压越高,测量速度越快。

由上所述,A/D转换的速度可以通过减小RC值来提高。若单片机带有外部电平变换中断,其A/D转换的精度还可以得到提高。

5、输入电压的测量范围:

A/D转换的输入电压测量范围为单片机门嵌电压至单片机的电源电压(VDD),若需要提高被测电压范围,可将输入电压通过电阻分压后进行测量,但其A/D转换的误差会受分压电阻影响。

6、单片机的A/D转换应用实例:

下图为采用PIC12C508实现A/D转换的应用实例,图中用4个发光二极管来作相应的电压值范围指示。其电压测量范围为1.4V至2.55V,其测量精度为10mV。

该应用实例与原程序可参考MICROCHIP公司的单片机应用笔记,该文件可从MICROCHIP网站上下载。

 

 

 

扩展阅读:单片机入门经验谈

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭