当前位置:首页 > 单片机 > 单片机
[导读]三种单片机模拟串口方法介绍模拟串口就是利用51的两个输入输出引脚如P1.0和P1.1,置1或0分别代表高低电平,也就是串口通信中所说的位,如起始位用低电平,则将其置0,停止位为高电平,则将其置1,各种数据位和校验位则根据情

三种单片机模拟串口方法介绍

模拟串口就是利用51的两个输入输出引脚如P1.0和P1.1,置1或0分别代表高低电平,也就是串口通信中所说的位,如起始位用低电平,则将其置0,停止位为高电平,则将其置1,各种数据位和校验位则根据情况置1或置0。至于串口通信的波特率,说到底只是每位电平持续的时间,波特率越高,持续的时间越短。如波特率为9600BPS,即每一位传送时间为1000ms/9600=0.104ms,即位与位之间的延时为为0.104毫秒。单片机的延时是通过执行若干条指令来达到目的的,因为每条指令为1-3个指令周期,可即是通过若干个指令周期来进行延时的,单片机常用11.0592M的的晶振,现在我要告诉你这个奇怪数字的来历。用此频率则每个指令周期的时间为(12/11.0592)us,那么波特率为9600BPS每位要间融多少个指令周期呢?

指令周期s=(1000000/9600)/(12/11.0592)=96,刚好为一整数,如果为4800BPS则为96x2=192,如为19200BPS则为48,别的波特率就不算了,都刚好为整数个指令周期,妙吧。至于

别的晶振频率大家自已去算吧。

现在就以11.0592M的晶振为例,谈谈三种模拟串口的方法。

方法一:延时法

通过上述计算大家知道,串口的每位需延时0.104秒,中间可执行96个指令周期。

#define uchar unsigned char

sbit P1_0 = 0x90;

sbit P1_1 = 0x91;

sbit P1_2 = 0x92;

#define RXD P1_0

#define TXD P1_1

#define WRDYN 44 //写延时

#define RDDYN 43 //读延时

//往串口写一个字节

void WByte(uchar input)

{

uchar i=8;

TXD=(bit)0; //发送启始

Delay2cp(39);

//发送8位数据位

while(i--)

{

TXD=(bit)(input&0x01); //先传低位

Delay2cp(36);

input=input>>1;

}

//发送校验位(无)

TXD=(bit)1; //发送结束

Delay2cp(46);

}

//从串口读一个字节

uchar RByte(void)

{

uchar Output=0;

uchar i=8;

uchar temp=RDDYN;

//发送8位数据位

Delay2cp(RDDYN*1.5); //此处注意,等过起始位

while(i--)

{

Output >>=1;

if(RXD) Output =0x80; //先收低位

Delay2cp(35); //(96-26)/2,循环共

占用26个指令周期

}

while(--temp) //在指定的

时间内搜寻结束位。

{

Delay2cp(1);

if(RXD)break; //收到结束位便退出

}

return Output;

}

//延时程序*

void Delay2cp(unsigned char i)

{

while(--i); //刚好两个

指令周期。

}

此种方法在接收上存在一定的难度,主要是采样定位存在需较准确,另外还必须知道

每条语句的指令周期数。此法可能模拟若干个串口,实际中采用它的人也很多,但如果你用Keil

C,本人不建议使用此种方法,上述程序在P89C52、AT89C52、W78E52三种单片机上实验通过。

方法二:计数法

51的计数器在每指令周期加1,直到溢出,同时硬件置溢出标志位。这样我们就可以

通过预置初值的方法让机器每96个指令周期产生一次溢出,程序不断的查询溢出标志来决定是否

发送或接收下一位。

//计数器初始化

void S2INI(void)

{

TMOD =0x02; //计数器0,方式2

TH0=0xA0; //预值为256-96=140,十六进制A0

TL0=TH0;

TR0=1; //开始计数

TF0=0;

}

void WByte(uchar input)

{

//发送启始位

uchar i=8;

TR0=1;

TXD=(bit)0;

WaitTF0();

//发送8位数据位

while(i--)

{

TXD=(bit)(input&0x01); //先传低位

WaitTF0();

input=input>>1;

}

//发送校验位(无)

//发送结束位

TXD=(bit)1;

WaitTF0();

TR0=0;

}

//查询计数器溢出标志位

void WaitTF0( void )

{

while(!TF0);

TF0=0;

}

接收的程序,可以参考下一种方法,不再写出。这种办法个人感觉不错,接收和发送

都很准确,另外不需要计算每条语句的指令周期数。

方法三:中断法

中断的方法和计数器的方法差不多,只是当计算器溢出时便产生一次中断,用户可以

在中断程序中置标志,程序不断的查询该标志来决定是否发送或接收下一位,当然程序中需对中

断进行初始化,同时编写中断程序。本程序使用Timer0中断。

#define TM0_FLAG P1_2 //设传输标志位

//计数器及中断初始化

void S2INI(void)

{

TMOD =0x02; //计数器0,方式2

TH0=0xA0; //预值为256-96=140,十六进制A0

TL0=TH0;

TR0=0; //在发送或

接收才开始使用

TF0=0;

ET0=1; //允许定时

器0中断

EA=1; //中断允许

总开关

}

//接收一个字符

uchar RByte()

{

uchar Output=0;

uchar i=8;

TR0=1; //启动Timer0

TL0=TH0;

WaitTF0(); //等过起始

//发送8位数据位

while(i--)

{

Output >>=1;

if(RXD) Output =0x80; //先收低位

WaitTF0(); //位间延时

}

while(!TM0_FLAG) if(RXD) break;

TR0=0; //停止

Timer0

return Output;

}

//中断1处理程序

void IntTimer0() interrupt 1

{

TM0_FLAG=1; //设置标志位。

}

//查询传输标志位

void WaitTF0( void )

{

while(!TM0_FLAG);

TM0_FLAG=0; //清标志位

}

中断法也是我推荐的方法,和计数法大同小异。发送程序参考计数法,相信是件很容

易的事。

另外还需注明的是本文所说的串口就是通常的三线制异步通信串口(UART),只用RXD、TXD、GND。

//***********************************************************************************************

三种单片机模拟串口方法介绍

模拟串口就是利用51的两个输入输出引脚如P1.0和P1.1,置1或0分别代表高低电平,也就是串口通信中所说的位,如起始位用低电平,则将其置0,停止位为高电平,则将其置1,各种数据位和校验位则根据情况置1或置0。至于串口通信的波特率,说到底只是每位电平持续的时间,波特率越高,持续的时间越短。如波特率为9600BPS,即每一位传送时间为1000ms/9600=0.104ms,即位与位之间的延时为为0.104毫秒。单片机的延时是通过执行若干条指令来达到目的的,因为每条指令为1-3个指令周期,可即是通过若干个指令周期来进行延时的,单片机常用11.0592M的的晶振,现在我要告诉你这个奇怪数字的来历。用此频率则每个指令周期的时间为(12/11.0592)us,那么波特率为9600BPS每位要间融多少个指令周期呢?

指令周期s=(1000000/9600)/(12/11.0592)=96,刚好为一整数,如果为4800BPS则为96x2=192,如为19200BPS则为48,别的波特率就不算了,都刚好为整数个指令周期,妙吧。至于

别的晶振频率大家自已去算吧。

现在就以11.0592M的晶振为例,谈谈三种模拟串口的方法。

方法一:延时法

通过上述计算大家知道,串口的每位需延时0.104秒,中间可执行96个指令周期。

#define uchar unsigned char

sbit P1_0 = 0x90;

sbit P1_1 = 0x91;

sbit P1_2 = 0x92;

#define RXD P1_0

#define TXD P1_1

#define WRDYN 44 //写延时

#define RDDYN 43 //读延时

//往串口写一个字节

void WByte(uchar input)

{

uchar i=8;

TXD=(bit)0; //发送启始

Delay2cp(39);

//发送8位数据位

while(i--)

{

TXD=(bit)(input&0x01); //先传低位

Delay2cp(36);

input=input>>1;

}

//发送校验位(无)

TXD=(bit)1; //发送结束

Delay2cp(46);

}

//从串口读一个字节

uchar RByte(void)

{

uchar Output=0;

uchar i=8;

uchar temp=RDDYN;

//发送8位数据位

Delay2cp(RDDYN*1.5); //此处注意,等过起始位

while(i--)

{

Output >>=1;

if(RXD) Output =0x80; //先收低位

Delay2cp(35); //(96-26)/2,循环共

占用26个指令周期

}

while(--temp) //在指定的

时间内搜寻结束位。

{

Delay2cp(1);

if(RXD)break; //收到结束位便退出

}

return Output;

}

//延时程序*

void Delay2cp(unsigned char i)

{

while(--i); //刚好两个

指令周期。

}

此种方法在接收上存在一定的难度,主要是采样定位存在需较准确,另外还必须知道

每条语句的指令周期数。此法可能模拟若干个串口,实际中采用它的人也很多,但如果你用Keil

C,本人不建议使用此种方法,上述程序在P89C52、AT89C52、W78E52三种单片机上实验通过。

方法二:计数法

51的计数器在每指令周期加1,直到溢出,同时硬件置溢出标志位。这样我们就可以

通过预置初值的方法让机器每96个指令周期产生一次溢出,程序不断的查询溢出标志来决定是否

发送或接收下一位。

//计数器初始化

void S2INI(void)

{

TMOD =0x02; //计数器0,方式2

TH0=0xA0; //预值为256-96=140,十六进制A0

TL0=TH0;

TR0=1; //开始计数

TF0=0;

}

void WByte(uchar input)

{

//发送启始位

uchar i=8;

TR0=1;

TXD=(bit)0;

WaitTF0();

//发送8位数据位

while(i--)

{

TXD=(bit)(input&0x01); //先传低位

WaitTF0();

input=input>>1;

}

//发送校验位(无)

//发送结束位

TXD=(bit)1;

WaitTF0();

TR0=0;

}

//查询计数器溢出标志位

void WaitTF0( void )

{

while(!TF0);

TF0=0;

}

接收的程序,可以参考下一种方法,不再写出。这种办法个人感觉不错,接收和发送

都很准确,另外不需要计算每条语句的指令周期数。

方法三:中断法

中断的方法和计数器的方法差不多,只是当计算器溢出时便产生一次中断,用户可以

在中断程序中置标志,程序不断的查询该标志来决定是否发送或接收下一位,当然程序中需对中

断进行初始化,同时编写中断程序。本程序使用Timer0中断。

#define TM0_FLAG P1_2 //设传输标志位

//计数器及中断初始化

void S2INI(void)

{

TMOD =0x02; //计数器0,方式2

TH0=0xA0; //预值为256-96=140,十六进制A0

TL0=TH0;

TR0=0; //在发送或

接收才开始使用

TF0=0;

ET0=1; //允许定时

器0中断

EA=1; //中断允许

总开关

}

//接收一个字符

uchar RByte()

{

uchar Output=0;

uchar i=8;

TR0=1; //启动Timer0

TL0=TH0;

WaitTF0(); //等过起始

//发送8位数据位

while(i--)

{

Output >>=1;

if(RXD) Output =0x80; //先收低位

WaitTF0(); //位间延时

}

while(!TM0_FLAG) if(RXD) break;

TR0=0; //停止

Timer0

return Output;

}

//中断1处理程序

void IntTimer0() interrupt 1

{

TM0_FLAG=1; //设置标志位。

}

//查询传输标志位

void WaitTF0( void )

{

while(!TM0_FLAG);

TM0_FLAG=0; //清标志位

}

中断法也是我推荐的方法,和计数法大同小异。发送程序参考计数法,相信是件很容

易的事。

另外还需注明的是本文所说的串口就是通常的三线制异步通信串口(UART),只用RXD、TXD、GND。

//***********************************************************************************************

【更多资源】

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭