当前位置:首页 > 电源 > 电源-LED驱动
[导读]RGB LED 串用于投影仪、建筑、显示器、舞台和汽车照明系统,因为这类系统需要高效率、明亮的光输出。一个 RGB LED 串要产生预期的色彩,其中每个 LED (红、绿和蓝光) 都需要独立和准确的调光控制。高端系统可以使用一个光反馈环路,以使微控制器能够调节 RGB LED 串,提供准确的色彩。

RGB LED 串用于投影仪、建筑、显示器、舞台和汽车照明系统,因为这类系统需要高效率、明亮的光输出。一个 RGB LED 串要产生预期的色彩,其中每个 LED (红、绿和蓝光) 都需要独立和准确的调光控制。高端系统可以使用一个光反馈环路,以使微控制器能够调节 RGB LED 串,提供准确的色彩。给 RGB LED 串增加一个白光 LED,形成一个 RGBW LED 串,就可以增加彩色照明系统可用的色彩、饱和度和亮度值。每个 RGBW LED 串中的 4 个 LED 都需要进行准确调光。两个 RGBW LED 串需要 8 个“通道”。

驱动 RGBW LED 串以实现色彩和亮度控制的方式多种多样。一种驱动 RGBW LED 串并调节其亮度的方式是使用 4 个单独的 LED 驱动器,分别用于 4 种颜色 (R、G、B 和 W),如图 1a 所示。在采用这种方式的系统中,每个单独的 LED 或 LED 串的电流 (或称 PWM 调光) 是由单独的驱动器和控制信号驱动的。不过,在这类解决方案中,LED 驱动器的数量会随着 RGBW LED 串数量的增加而迅速增多。任何采用大量 RGBW LED 串的照明系统都需要大量驱动器,对这些驱动器的控制信号进行同步的工作量也很大。

一种简单得多 (也更便捷) 的方法是,用单个驱动器 / 转换器以固定电流驱动所有 LED,同时用一个并联功率 MOSFET 矩阵对各个 LED 进行 PWM 调光以实现亮度控制。如图 1b 所示的矩阵式调光器和单个 LED 驱动器减小了图 1a 解决方案的电路尺寸。此外,用单条通信总线控制矩阵式 LED 调光器使 RGBW LED 色彩混合系统相对简单和紧凑,同时驱动大电流 RGBW LED 串时,色彩和亮度控制也很准确。

图 1a

图 1b

图 1a 和 1b:(1a) 在大功率色彩混合应用中,8 个单独的 LED 驱动器和 PWM 信号可用来驱动两个 RGBW LED 串,或者 (1b) 可用具串行通信功能的单个升压-降压型 LED 驱动器和矩阵式 LED 调光器实现小得多、也紧凑得多的解决方案。

LT3965 矩阵式 LED 调光器可实现这样的设计,如图 5 所示。每个LT3965 的 8 个开关矩阵式调光器可以与整整两个 RGBW LED 串配对使用,从而允许在零至 100% 亮度之间、以 1/256 的 PWM 步进单独控制每个 LED (红、绿、蓝和白光) 的亮度。两线 I2C 串行接口命令为所有 8 个通道提供色彩和亮度控制。提供给矩阵式 LED 调光器 IC 的 I2C 串行接口代码决定所有 8 个 LED 的亮度状态,并可以在发生故障的情况下,检查 LED 是否开路或短路。

既然 RGBW LED 串中的每个 LED 都设计成单点光源,那么红、绿、蓝和白光合起来就产生了多种多样的色彩,而且饱和度、色彩和亮度是可控的。凭借高速 LT3965 矩阵式调光器,可以在零 (0/265) 和 100% (256/256) 亮度之间、以 1/256 调光步进设定每个 LED 的亮度。

准确的 0 ~ 256 级RGBW 色彩及亮度控制

通过对 RGBW LED 串中的红、绿、蓝和白光 LED 单独进行 PWM 调光,RGBW LED 可以产生准确的色彩和亮度。单独进行的 PWM 亮度控制可支持 256:1 或更高的调光比。取代 PWM 调光的另一种方法是,简单地降低每个 LED 的驱动电流,但这种方法会影响准确度,因此仅允许 10:1 的调光比,而且这种方法导致 LED 本身产生色偏移。采用 PWM 调光的矩阵式调光方法与降低驱动电流的方法相比,前者的色彩及亮度准确度会更高。

LED 驱动器 (提供 500mA LED 电流) 的带宽和瞬态响应会影响色彩准确度。图 5 中紧凑的升压-降压型转换器的交叉频率高于 10kHz,输出电容器很小或没有输出电容器,随矩阵式调光器接通或断开其开关,该转换器可对所驱动 LED数量的变化迅速做出响应。

为了说明快速瞬态响应对准确度而言多么重要,我们以不同的 PWM 占空比单独运行红、绿和蓝光 LED,并用一个 RGB 光传感器测量这些 LED 的光输出。图 3 中的结果显示,在 4/256 至 256/256 范围内,每种颜色的斜率是一致的,在低于这个范围时斜率稍有变化。当然,红、绿和蓝光 LED 的色彩性能并不是完美无缺的,因此,甚至在仅驱动一种颜色的 LED 时,有些颜色还是会从其他频带上泄漏出来。不过,总的来看,这是一个高度准确的系统。

图 2:用 LT3965 矩阵式调光器对 500mA RGBW LED 串的电流进行 PWM 调光和调相,以产生各种色彩和照明图案。在对各个 LED 进行单独的 PWM 调光时,LT3952 升压-降压型转换器 / LED 驱动器非常容易跟上 LED 电压的迅速变化。

图 3:PWM 调光占空比在 0/256 – 256/256 之间变化时,对红、绿、蓝和白光亮度的控制情况。PWM 调光占空比由矩阵式 LED 调光器控制,该调光器与 LT3952 升压-降压型 LED 驱动器配对使用,如图 5 所示。

采用带宽非常大 (>40kHz) 的降压型转换器 LED 驱动器时,直至 1/256 PWM 调光范围的准确度都可改善,但是要这么做,或者需要增加另一个升压型转换器,以提供一个稳定和高于 30V 的输出电压,因而增加了成本,或者需要一个高于 30V 的输入电压源。除非在极低光输出时必须提供非常高的准确度,否则没什么理由额外增加一个转换器,而放弃图 5 中通用、简单和尺寸紧凑的升压-降压型转换器。

这里描述的矩阵式调光 RGBW LED 色彩混合器系统实现了非常宽的色域,如图 4 所示。增加额外的颜色,例如琥珀色,还可以进一步扩展色域。RGBWA LED 串 (包括一个琥珀光 LED) 可以产生 RGBW LED 串无法产生的深黄色和深橘黄色。这些 LED 也可以用矩阵式调光器驱动,不过与 8 通道矩阵式调光器很好匹配的是两个 RGBW LED。

图 4:RGB LED 串提供很宽的色域。简化色彩混合算法的方式之一是增加白光 LED。在有些混合方法中,白光 LED 用来改变饱和度,同时用红光、绿光和蓝光 LED 设定色彩。

LT3965 的 256 级调光方法非常容易对应于典型的 RGB 着色程序和常见的色彩混合算法。例如,如果打开一个标准的 PC 着色程序就会看到,色彩混合是通过 256 个值的 RGB 系统完成的,如图 6 所示。再比如,图 2 中的 LED 电流波形用一个 RGBW 矩阵式 LED 系统产生紫色光,而这个矩阵式 LED 系统是由基本 PC 着色程序控制的。由于本文描述的设计方案产生准确的电流驱动和 PWM 控制,因此可以通过调节各个 LED 的占空比,按照预期对RGBW LED串进行色彩校准,从而可简便地抵消固有的 LED 亮度变化。

图 5:LT3965 矩阵式 LED 调光器与 LT3952 升压-降压型 LED 驱动器一起使用,控制两个 500mA RGBW LED 串中各个 LED 的色彩,以串行通信方式控制色彩和照明图案。

(6a)

(6b)

(6c)

图 6:用标准 PC 色彩选择器可以选择色彩。矩阵式调光器使用的 256 个值 (0 - 256) 可以与典型 RGB 系统中使用的 0 – 255 对应。例如,RGB (128、10、128) 产生紫色光。如以上照片中所见,矩阵式调光器可以使一个真实的 RGBW LED 串产生预期色彩,从而简化照明设计师的工作。(6a) 选择一种颜色。(6b) 使 RGB 值与 LT3965 LED 矩阵式调光器的调光比相对应。(6c) 用 PC 设定调光比的值,之后可以看到结果。

采用升压-降压型驱动器的矩阵式 LED 色彩混合器

矩阵式调光器需要合适的 LED 驱动器,以能够用多种输入给 8 个 LED 组成的 LED 串供电,例如标准 12V ±10% 电源、9V 至 16V (汽车电池) 或 6V 至 8.4V (锂离子电池)。这类驱动器解决方案之一是 LT3952 升压-降压型 LED 驱动器,从输入至 LED,该解决方案既可升高也可降低电压,同时提供低纹波输入和输出电流。在该器件的浮置输出拓扑中,输出电容器很小或没有输出电容器,因此在以接通断开方式对各个 LED 进行 PWM 调光以控制色彩和亮度时,该器件能够快速响应 LED 电压的变化 (图 2)。

图 5 所示的 LT3952 500mA 升压-降压型 LED 驱动器与 8 开关矩阵式 LED 调光器 LT3965 以及两个 RGBW 500mA LED 串一起使用。当串联 LED 数量在 0 至 8 个范围内变化时,这种新的升压-降压型拓扑可以在 0V 至 25V 输出电压范围内顺畅地运行。串联 LED 的瞬时电压随时变化,怎样变化取决于,在任意给定瞬间,矩阵式调光器启动和禁止了哪些以及多少 LED。这个转换器 / 拓扑的 60V OUT 电压 (VIN 和 VLED 之和) 以及转换器占空比针对 6V 至 20V 的整个输入范围以及 0V 至 25V/500mA 的输出范围 (串联 LED 电压) 做出了规定。

矩阵式调光器用并联功率 MOSFET 对 LED 分流,以此控制 LED 亮度。无论是浮置输出升压-降压型 LED 驱动器还是矩阵式 LED 调光器,都不要求 LED 接地。只要 LT3965 的 VIN 引脚连至 SKYHOOK,所有并联 MOSFET 都可以正常工作,电压至少比 LED+ 高 7.1V。SKYHOOK 电压可以由开关转换器构成的充电泵产生,也可以由一个稳定的电源提供,当然该电源电压要至少比预期的 LED+ 最高电压高 7.1V (在这种情况下,为 20V VIN 最大值加上 25V LED 最大值)。采用 3mm x 2mm DFN 封装的纤巧 LT8330 升压型转换器产生 SKYHOOK 电压是个不错的选择。

一个可选外部时钟器件用来在 350kHz 时同步系统,这种方法适合汽车环境,因为效率相对较高,且允许使用紧凑型组件。尽管这个系统同样可以在 2MHz (高于 AM 频段) 上运行,但当矩阵式调光器使所有 LED 都短路,且 LED 串电压降至 330mΩ • 500mA • 8 = 1.3V 时,350kHz (低于 AM 频段) 使这个升压-降压型转换器无需采用脉冲跳跃模式,就能够执行调节功能。这个频率还支持高调光比而不会产生可见的 LED 闪烁。

LED 接通或断开时的启动顺序

矩阵式 LED 调光器系统可以设定以在所有 LED 都接通或断开时启动。如果在所有 LED 都断开时启动,那么这些 LED 的亮度就可以和缓地渐变,或者以设定的色彩和亮度启动,例如 10% 亮度的绿-蓝光。如果在串行通信系统发出命令指示调光器该做什么之前,所有 LED 都以 500mA 满标度电流启动,那么在串行通信启动之前,可能看到明亮的全“白色”光。

无论以哪种方式启动,LT3965 都应该在接收 I2C 串行通信命令之前加电,否则当该器件进行加电复位 (POR) 时,初始通信命令可能丢失。当 EN/UVLO 引脚向上穿过 1.2V 门限时,就会发生 POR。既然这个电压以 SKYHOOK 至少比 LED+ 高 7.1V 这一事实为基础,那么任何时候只要加上高的 SKYHOOK 电压后就能发生,例如用一个小型升压型稳压器提供 55V,或者来自 LT3952 开关节点的充电泵电压足够高以提供 SKYHOOK 电压后也会发生。在由充电泵提供 SKYHOOK 电压的情况下,充电泵提供 SKYHOOK 电压之前,也许存在 LED 电流,因此在 LT3965 的开关断开 LED 之前,LED 会发光。这是一种简单的解决方案,设计师想让 LED 以最大亮度接通启动时,可以使用这种方案。

要让 LED 开始工作,必须在 LT3952 接通之前存在高的 SKYHOOK 电压。如图 6 所示,如果 PWM 引脚在启动时保持低电平,那么 LT3952 就不启动,直到外部信号命令该器件启动为止,例如由主微控制器发来这样的信号。一旦 SKYHOOK 电压出现,该微控制器就可以向 LT3965 发送 I2C 设置命令,将 LT3965 的开关设置到 LED OFF 位置,之后电流将流向这些开关。设置完成后,就可以确认 LT3952 PWM,然后电流开始流经已经短路的 LT3965 开关,LED 则处于关断状态。之后,出现亮度渐变的启动,或者 LT3965 调光器可能跃变至特定色彩或亮度。

一发生复位,LT3952 的 PWM 必须再次拉低以将其关断,并在 LED 关断位置重新启动。在图 5 所示情况下,LT8330 这类简单的微功率升压型转换器可在 6V 至 20V 输入电压范围内提供 55V 输出。通过确认 ALERT 标记,微控制器接收表示 LT3965 已加电并准备好接收串行通信命令的信号。在任何开关被短路之前,由于开关两端电压为零,所以通过 LED 的电流为零,这种状态被解释和报告为短路故障。只有在通过 SKYHOOK 给 LT3965 加电后,才会确认这个标记。

结论

LT3965 矩阵式 LED 调光器可以与升压-降压型 LED 驱动器配对使用,以构成一个色彩准确的 RGBW LED 色彩混合器系统。LT3952 可用来在 6V 至 20V 输入范围内以 350kHz 开关频率和 500mA 电流驱动两个 RGBW LED 串。这种通用系统可由汽车电池、12V 电源或锂离子电池供电。之所以能够实现很高的色彩准确度,是因为正在申请专利的升压-降压型 LED 驱动器拓扑能够实现快速瞬态响应,并能够通过 256:1 的 I2C 控制矩阵系统实现预期的调光控制。LT3965 可设定为启动时,所有 LED 都断开,并以渐变亮度启动,或直接跳跃至特定色彩。可以增加光反馈 (通过微控制器) 以提高色彩准确度,尽管不是必须这么做。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭