当前位置:首页 > 电源 > 电源-LED驱动
[导读]使用LED型固态照明(SSL)的便携式设备要求使用高效驱动电路来延长电池使用时间,同时还要求使用一些亮度调节方法来对光线输出进行调节,以适应周围的照明环境。在诸如智能

使用LED型固态照明(SSL)的便携式设备要求使用高效驱动电路来延长电池使用时间,同时还要求使用一些亮度调节方法来对光线输出进行调节,以适应周围的照明环境。在诸如智能手机或者便携式GPS导航系统背光照明等应用中,必须使用LED亮度调节,目的是让用户在强太阳光和夜晚弱光条件下都能看清楚屏幕。使用手电筒时,用户认为较长的电池使用时间更加重要,而非提供最强的光线照明。我们可以在这些应用中使用模拟亮度调节或者脉宽调制(PWM)亮度调节方法。模拟设计通过使用一种创新方法来建立起一个参考电压,从而获得比PWM型设计更高的效率。模拟和PWM亮度调节方法都对LED驱动电流进行控制,而该电流同光线输出成正比关系。模拟亮度调节结构简单,控制功耗最低,并且一般比PWM亮度调节方法要高效,原因是低驱动电流时LED正向电压更低。但是,模拟亮度调节要求通过一个单独的电压基准生成模拟电压(可能会对某个方波输入信号使用RC滤波器输出,或者使用一个昂贵的数模转换器(DAC))。图1所示电路通过修改一个电位计,没有了这些方法的复杂性,从而实现了一种简单、高成本效益的模拟亮度调节方法。这种整体解决方案,是一种高效、低成本、低组件数目的LED驱动器,适用于单个高电流LED,例如:欧司朗的金龙(Golden Dragon)等,可用于一些小型电池供电型设备。电路运行情况1 电位计R1实现的模拟亮度调节LED驱动器电路要求使用一个电压调节、同步、降压转换器,通过一个17V电源提供高达1A的输出电流,例如:TPS62150。图1中,这种降压转换器使用反馈(FB)引脚来控制检测电阻R2的电压,对LED的电流进行调节。FB电压由一个精确内部参考电压(一般为0.8V)和一个SS/TR(慢启动与追踪)外部输入引脚共同控制。SS/TR引脚电压低于1.25V时,FB引脚电压等于SS/TR引脚电压乘以0.64,即VFB = 0.64 * VSS/TR。通过控制FB电压,进而控制R2的电压,IC可改变驱动LED的电流大小。SS/TR引脚有一个嵌入式电流源,其一般为2.5 μA。该电源常用于对电容器充电,并形成平顺、线性的SS/TR引脚电压上升。典型降压转换器中,这会使输出电压线性、受控地上升,同时也减少了输入电源的突入电流。使用这种设计时,一个接地电阻在SS/TR引脚上产生恒定电压。一个电位计放置于SS/TR引脚上,目的是将该引脚的电压保持在250mV(电位计=100 kΩ)和0V(电位计=0Ω)之间。回顾上述方程式,它意味着FB引脚电压范围在160 mV和0V之间。R2为一个0.15Ω电阻器时,LED电流变化范围为1.07A-0A。由于FB引脚电压与SS/TR引脚电压线性相关,因此电位计可提供如图2所示线性模拟亮度调节。2 1所示电路的亮度调节线性情况,其使用一个电位计实现亮度调节。这种电路拥有非常高的效率,因为FB引脚电压的值相对较低。这种低电压可降低检测电阻R2的功耗。另外,TPS62150在轻载电流条件下使用节能模式,以在大多数负载范围保持较高的效率。图3显示了图1所示电路的效率,其使用一个12V输入,并且在开关输出过程中使用TDK的VLF3012ST-2R2电感器。我们可以提高这种电路的效率,但代价是增加电路尺寸。例如,你可以将FSW(开关频率)控制引脚连接输出电压,从而降低工作频率,并且(或者)选择一个低DCR(DC电阻)及(或)拥有更佳AC损耗特性的电感器。尽管实现这两种方法可能需要更多的电路板面积,但却可以达到90%以上的效率。尽管其效率并非最高,但图1所示设计却拥有较小的解决方案尺寸和较好的工作效率。电路局限性由于这种电路使用一个非精确模拟输入(一种手动调节电位计)来调节LED电流,因此检测电阻、电位计电阻和SS/TR引脚电流的容差以及其对LED亮度的影响程度,都不那么重要。如果LED太亮,用户只需调低电位计电阻便可。如果太暗,只需调高电位计电阻。使用一个多向调节电位计时,我们可以有效地控制LED亮度,用于许多一般应用,例如:手电筒和背光等。这种设计存在的一个缺点是SS/TR引脚和FB引脚电压之间的补偿。SS/TR引脚被拉低至0V时,通过减小电位计电阻,仍然可以有50mA的电流流过LED。因此,LED无法完全关闭,除非你增加一个带有上拉电阻器的接地开关,其连接至EN(激活)引脚。其他模拟亮度调节方法本文所述使用电位计电路的优点是其简易性和高成本效益。模拟亮度调节要求的模拟电压由IC的一个精确电流源产生,之后通过一个用户调节型电阻器转换为相应的光输出。除这种电位计以外,无需再使用任何其他组件。亮度调节的输入即电位计,是唯一需要的组件。 3 1所示电路在亮度调节范围的效率。如果没有这种精确电流源,我们需要考虑使用其他方法来产生模拟亮度调节所需的模拟电压。一些传统方法包括:使用一个独立参考电压IC,产生精确模拟电压;通过一个RC滤波器改变微控制器PWM输出的占空因数来产生精确模拟电压;或者使用一个带DAC的微控制器来产生精确模拟电压。所有这些方法都要求用户输入来改变光输出。使用参考电压IC时,仍然要求使用一个电位计作为IC的输入,以调节电压和控制光输出。基准IC方法的成本比本文重点介绍的简易方法要高。最后两种方法要求使用一个微控制器,同样也增加了解决方案的成本。尽管智能手机和GPS系统都包含有一颗微控制器,但一般的手电筒却没有。具体使用哪种方法,取决于你手边的应用,因为某些产品需要更友好的用户界面(可能使用触摸屏控制)。第三种方法使用一个更大且更昂贵的DAC来代替电位计。DAC具有更好的输出模拟电压间隔尺寸,因此其光输出控制也比电位计更加精确。具体的应用决定了这种高昂的代价是否值得。在降压转换器的SS/TR引脚上使用电位计是一种简单、小巧且低成本的方法,可为背光和手电筒照明等应用的高电流LED提供线性的模拟亮度调节。使用模拟亮度调节时,使用一个12V输入电源可在大多数亮度调节范围保持85%左右的效率。整套电路仅要求6个组件加上大功率LED。立即加入德州仪器技术社区

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭