当前位置:首页 > 电源 > 电源-LED驱动
[导读]数学模型总是有助于确定特定设计的最佳补偿组件。然而,补偿WLED电流调节升压转换器的回路与补偿配置为调节电压的相同转换器略有不同。用传统方法测量WLED电流调节升压转换

数学模型总是有助于确定特定设计的最佳补偿组件。然而,补偿WLED电流调节升压转换器的回路与补偿配置为调节电压的相同转换器略有不同。

用传统方法测量WLED电流调节升压转换器的控制回路很麻烦,因为它的阻抗很低。反馈(FB)引脚和缺少顶部FB电阻。在“Designer系列,第五部分:电流模式控制建模” 1 中,Ray Ridley提出了一种简化的小信号控制环路模型,用于具有电流模式控制的升压转换器。以下说明如何修改Ridley的模型,使其适合WLED电流调节升压转换器;它还解释了如何测量升压转换器的控制回路。

回路元件

如图1所示,任何可调节的DC/DC转换器都可以进行修改,以便从输入电压提供更高或更低的稳压输出电压。在这种配置中,如果我们假设ROUT是纯阻性负载,那么VOUT = IOUT×ROUT。当用于为LED供电时,DC/DC转换器实际上通过调节低端FB电阻两端的电压来控制通过LED的电流,如图2所示。因为负载本身(LED)取代了上FB电阻,传统的小信号控制回路方程不再适用。直流负载电阻为:

 

 

VFWD,取自二极管数据表或测量值,是ILED的正向电压; n是串中LED的数量。但是,从小信号的角度来看,负载电阻包括REQ以及ILED处LED的动态电阻rD。虽然一些LED制造商提供不同电流水平的典型rD值,但确定rD的最佳方法是从典型的LED I-V曲线中提取它,这是所有制造商提供的。图3显示了OSRAM LW W5SM大功率LED的示例I-V曲线。作为动态(或小信号)量,rD被定义为电压的变化除以电流的变化,或rD =ΔVFWD/ΔILED。为了从图3中提取rD,我们只需从VFWD和ILED驱动应用的直切线并计算斜率。例如,使用图3中的虚线切线,我们在ILED = 350 mA时得到rD =(3.5 - 2.0 V)/(1.000 - 0.010 A)=1.51Ω。

 

 

图1:用于调节电压的可调节DC/DC转换器

图2:用于调节LED电流的可调节DC/DC转换器

小信号模型

作为小信号模型的示例,将使用驱动三个系列OSRAM LW W5SM部件的TPS61165峰值电流模式转换器。图4a显示了电流调节升压转换器的等效小信号模型,而图4b显示了更简化的模型。

 

 

图3:OSRAM LW W5SM的IV曲线

公式3显示了用于计算电流调节和电压调节升压转换器中DC增益的基于频率(s域)的模型:

 

 

其中常见变量为:

 

 

 

 

图4:电流调节升压转换器的小信号模型。

 

 

占空比D,以及VOUT和VOUT的修改值对于两个电路,REQ以相同的方式计算。 Sn和Se分别是升压转换器的自然电感和补偿斜率;和fSW是开关频率。电压调节升压转换器的小信号模型与电流调节升压转换器的模型之间唯一真正的区别是电阻KR,它乘以跨导项(1-D)/Ri,并占主导地位极点,ωp。表1总结了这些差异。有关更多信息,请参见参考文献1。由于RSENSE的值通常远低于配置为调节电压的转换器中ROUT的值,因此ROUT的电流调节转换器的增益= REQ,几乎总是低于电压调节转换器的增益。

测量环路

测量控制环路增益和电压调节转换器的相位,网络或专用环路增益/相位分析仪通常使用1:1变压器通过小电阻(RINJ)将小信号注入环路。然后,分析仪测量并在频率上将点A处的注入信号与点R处的返回信号进行比较,并以幅度差(增益)和时间延迟(相位)的形式报告比率。只要A点的阻抗比R点低得多,该电阻就可以插入环路的任何地方。否则,注入的信号将太大并干扰转换器的工作点。如图5所示,FB电阻检测输出电容(低阻抗节点)输出电压的高阻抗节点是这种电阻的典型位置。

在电流调节配置中,负载本身是FB的上部电阻,注入电阻不能与LED串联插入。必须首先更改转换器的工作点,以便将电阻器插入FB引脚和检测电阻之间,如图6所示。在某些情况下,可能需要一个非反相单位增益缓冲放大器来降低阻抗。注入点和降低测量噪声。

 

 

图5:电压调节转换器的控制回路测量。

图6中的测量设置但没有放大器,并且带有RINJ = 51.1,使用Venable环路分析仪测量环路。电流调节转换器的模型使用TPS61170的数据表设计参数在Mathcad®中构建,其具有与TPS61165相同的核心。当VIN = 5 V且ILED设置为350 mA时,该模型给出了TPS61165EVM的预测环路响应,如图7所示,它提供了与测量数据的简单比较。

我们可以很容易地解释测量和测量之间的差异。通过观察WLED动态电阻的变化并使用典型的LED IV曲线以及IC放大器增益中的芯片到芯片变化来模拟增益。

 

 

图6:控制环电流调节转换器的测量。

 

 

图7:VIN = 5 V和ILED = 350 mA时的测量和模拟环路增益和相位。

结论

虽然不精确该数学模型为设计人员提供了设计WLED电流调节升压转换器补偿的良好起点。此外,设计人员可以使用其中一种替代方法测量控制回路。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭