斜坡补偿电路设计与实验
扫描二维码
随时随地手机看文章
CCM下电感L1中的电流iL波形如图4所示,可得:
α=△IL/△I0=D/(1 - D)=m2/m1(2)
式中,Ue 为误差放大器输出电压,m1、- m2为电路中iL的上升和下降斜率, △I0 为某个周期扰动使iL初值产生的增量, △IL为该周期结束时iL的变化量。
可见,要使系统稳定,应有△IL< △I0,所以有D < 0. 5 ;当D > 0. 5时,电路会出现次谐波振荡,使电路不稳定。消除谐波振荡的技术是增加斜坡补偿,即给Ic 增加一个负斜率的斜坡。增加斜坡补偿后,新控制量斜率为- ma。增新的m′1= m1+ ma,新的m′2 = m2- ma,电感电流的波形如图5所示,式2变为:
α=(m2- ma)/(m1+ ma)(3)
通过设计合理的ma,可以使|α| < 1 ,即系统达到稳定。一般取ma = 0. 75m2。
设计的斜坡补偿电路采用CT上的峰峰值电压信号作为斜坡补偿的输入信号,图3中斜坡补偿网络原理电路由晶体管Q4,R8 ,R9 ,R10 ,R12 ,C5 ,C8组成,C5 为交流耦合电容,隔离脚4输出振荡信号中的直流分量。为减小定时电阻R13和补偿网络之间相互影响,在振荡器输出和补偿网络输入之间增加了一级射极跟随器。R8和R10组成分压网络,在UC3843的脚3获得斜坡补偿信号,同时R10和C8组成尖峰电流吸收器,滤除尖峰干扰信号。斜坡补偿信号和电流检测信号在UC3843的脚3处求和,实现了斜坡补偿。
1. 3 调光电路设计
在UC3843内部,电流检测比较器的反向输入端被内置的齐纳二极管钳位在1V ,只要芯片脚3上的电压达到1V ,端6关闭,立即使MOS管Q1关断。因此可以通过控制脚3的输入电压值改变一个周期内流过L ED的平均电流来对L ED进行调光控制。图3中由R14 ,R15 ,R16 ,R17 ,Q2和Q3组成。为使人眼感觉不到灯光的闪烁,取PWMD信号的频率为100~200HZ。当PWMD信号为高电平时, Q3 截止,UC3843的3脚的信号为电流检测信号和斜坡补偿信号之和,此时电路正常工作;当PWMD信号为低电平时,Q3 导通,加在3脚处的电压超过1V ,UC3843的输出端6立即使MOS管截止。当PWMD信号的占空比变化时,一个周期内流过L ED的平均电流也发生变化,从而L ED输出的光通量也发生变化,达到控制L ED亮度的目的。实际应用中PWMD可以由具有PWM功能的简单的单片机产生。
2 试验结果
对设计出的驱动电路进行测试,当直流输入为9. 5V ,输出峰值电流为300mA ,定时电阻R13为10k ,定时电容为1nF ,驱动一只1W大功率L ED时的试验结果如下:当PWMD引脚接高电平时,开关管栅极的电压信号波形Vg(下方波形)和R12的电流检测信号的波形Vs(CH1 ,上方波形)如图6所示,L ED 两端电压Ve波形如图7所示。实验结果基本符合理论值。
当PWMD引脚接一频率为100Hz ,占空比为50 %的脉宽信号时,观察到L ED的亮度明显降低,开关管栅极的电压信号波形(CH1 ,上方波形)和流过限流电阻R12的电流检测信号的波形(CH2 ,下方波形)如图8所示。基本符合理论分析的结果,但是调光电路的瞬态响应还不是很理想。