多普达696充电器电路图
扫描二维码
随时随地手机看文章
多普达696充电器电路图
电路原理图所示,整个电路大致分为显示、电压比较、基准电压、开关控制四大部分,其中由双色发光二极管LED、电阻R5、电阻R6、集成电路 U1B(U1、最大的那个集成电路中的一部分)构成显示电路,指示充电状态;由三极管Q1(电路原理图中并没有编号,笔者自命名)构成充电控制电路,负责控制充电电流;由芯片U1A以及电阻R8、R9、R1O、R11等周边元件构成电压比较电路,负责判断电池的充电状态;由IC芯片U2、电容C3等元件构成基准电压电路,以便U1A比较电池状态;二极管D1在这里起保护作用,防止电池电压高于电源电压造成电池放电。 电路工作原理:接上电之后,因为C3的延时作用,使经过R1、R2、R3、R9、R1O分压的UIA+端的电压高于UIA-端的电压,此时UIA输出高电平,然后经过R3反馈后处于高电平锁定状态,黄色的充电指示灯LED2和负责控制充电电流的Q1都处于关闭状态。而此时U1B则因为C2开始充电,U1B-端的电压高于经过R1、R2、R3、R9、R1O分压的U1B+端电压,U1B输出低电平,LED1发光,LED发出微亮的红光。随着C2充电结束,U1B-端的电压逐渐高于UIB+端的电压,LED1熄灭。这样)接上电源时指示灯会闪一下,以确认电源正带。 接上电池后,电池电压经R8、 R9、R10分压,接到U1A+上。因为此时电池电压V很低,所以U1A+所分得的电压低于U1A-从U2得到的基准电压,UIA输出低电平,Q1与 LED2导通,电池开始充电。同时因为UIB+端的电压也被拉低,所以UIB输出低电平,LED1和LED2同时导通,LED发出明亮的绿光,表示正在充电中。 充电时,随着电池电压不断升高,U1A+电压也随着升高。当电池充满时,U1A+的电压会高过基准电压,此时U1A输出高电平,负责控制充电的 Q1和充电指示灯LED2关闭,充电停止。因为U1B+得到的电压要比U1A+低一些,所以此时U1B+的电压依然低于塞:准电压,U1B输出低电平,LED1继续发光,此时LED呈现微弱的红光,表明电池已经充满。
充电电流、截止电压以及温度控制:在充电过程中,对电池性能与寿命影响最大的是充电电流、充电温度和截止电压三个参数,所以接下来笔者详细分析并测试一下充电器的这三个参数。从原理围我们可以看出,充电电流主要受控于Q1,因为在整个电路中Q1只起一个开关作用,所以电池的充电电流大致等于Q1集电极的通过电流Ic。在充电过程中,充电电流Ic会随着三极管的Vce电压、Ib电流的变化而改变,所以个充电过程中充电电流是不一样的。在电池刚刚充电时,电池的电压大致在3.6V左右,Vce的电压等于输入电压-D1降压-电池电压,其中实际测量得到D1降压在0.4V左右,Vce大致为1V,此时实际测量到的充电电流为0.39A。 电池快要充满时,电池电压会上升到4.2V左右,此时Vce大致为0.4V,实际测量到的充电电流为0.21A。这款充电器使用的三极管型号为S8550,参考器件手册以及实际测重结果绘制了电流图(下图所示)。 充电器的充电截止电压由UIA控制,电池的电压经过R8、R9、RIO分压电路以1/1.7的比例分压得到测试电压,然后与U1得到的2.5V基准电压比较。当电池电压达到 4.25V时,U1A+的电压高于U1A-的电压,U1A输出低电平,充电结束,也就是说充电截止电压为4.25V。在充电温度监控方面,没有找到任何检测电路。 整个充电器只是通过一个电阻,把电池上的温度检测接到了电池正极上,相当于直接把电池温度检测端屏蔽掉了,所以对电池的充电温度是没有任何监控的。