当前位置:首页 > 电源 > 电源电路
[导读]TI 高精度设计是由TI 模拟产品专家创建的模拟解决方案。经验证的设计提供理论分析、器件选型、完整的印刷电路板(PCB)、可使用电路经测试过的性能。还讨论了满足可替代设计目

TI 高精度设计是由TI 模拟产品专家创建的模拟解决方案。经验证的设计提供理论分析、器件选型、完整的印刷电路板(PCB)、可使用电路经测试过的性能。还讨论了满足可替代设计目标的电路修改。这个电路被设计为将低频噪声(0.1Hz 至10Hz)放大至可由示波器轻松测量的电平幅度。它采用一个0.1Hz二阶的高通滤波器和一个10Hz四阶的低通滤波器来实现这个功能。0.1Hz至10Hz 噪声测量是放大器数据手册中常见的关键参数。这个设计用于简化0.1Hz 至10Hz 噪声测量,常用于不同封装类型的运算放大器。

 

高精度低噪声滤波电路设计

 

传输文件进行 [薄膜开关] 打样

设计总结此设计要求如下:电源电压:+/-15V 直流,或+/-2.5V 直流。输入:噪声(nV),由放大器确定准确的幅度输出:噪声(mV),大到能在示波器上读出来。总增益:100dB,100,000V/V,滤波器增益:40dB,100V/VTable 1中总结了设计目标和性能。图示了此设计电路测试到滤波器的响应。

工作原理:这个电路的目的是将低频噪声放大至可被典型示波器测量到的电平幅度这个测量值是放大器数据手册中的常见关键参数。这些测量中采用的标准带宽为0.1Hz 至10Hz.很多高精度放大器大概有参考于输入噪声为100nVpp数量级的总噪声。这个电路的增益将设计为使得输出到示波器输入端的信号在10mVpp 或更大的值。请注意,当直接用BNC接头连接时,很多示波器分辨率可达到1mV/格的显示精度。此测试器件(DUT) 处于高增益工作状态,此时它是主要的噪声源,而级联滤波器电路内的噪声不是很明显。这个级联滤波器的目的是为了具有低噪声、精确的滤波器截止频率和精确的增益。低频噪声规格总是以DUT等效的输入噪声为参考。示波器测得的噪声为10mVpp。通过用输出噪声除以总增益计算得到RTI噪声。在这个示例中,总增益为100,000 (10 x 1,000),所以用输出噪声除以总增益得到RTI噪声(Vn-RTI = 10mV / 100,000 = 100nVpp)。

中显示这个设计电路更完整的原理图。第一级是在测试器件(DUT)。在这个器件上配有插槽以实现不同封装器件的轻松测试。跟随DUT 的三个级联电路组成一个0.1Hz(二阶)至10Hz(四阶)带通滤波器。目的是将OPA827 上的低频电压噪声放大至可由示波器容易读出的电平幅度。0.1Hz 至10Hz 的带宽选择是一个业界标准。

 

高精度低噪声滤波电路设计

第一级-DUT这个电路的用途是测量运算放大器的低频噪声。第一级是我们希望测试的运算放大器,被称为测试器件(DUT)。如所示,DUT 是一个高增益(1000x)电路以确保其噪声是整个电路的主要噪声源,跟随的后级运放电路噪声可忽略。设置增益的并联电阻组合被选择为最大限度地减少电阻热噪声(Req = 100kΩ || 100Ω = 99.9Ω)。显示电阻和热噪声之间的关系。在这个电路中,由等效电阻Req = 99.9Ω产生的噪声大约为1.1nV。

第二级是一个增益为10 的高通滤波器。德州仪器(TI) 公司的软件工具Filter-proTM 可用来设计此类型滤波器。可选择一个二阶的Butterworth,Sallen-Key,高通滤波器等滤波器选用最大平坦幅度的Butterworth 频率响应Sallen-Key 拓扑结构被使用,这是因为它产生更多合理的器件值;也就是说,电容和电阻在可用的范围内,以选用低成本高精度器件。

第三级是增益为10 的10Hz 低通滤波器。此滤波器为一个二阶Butterworth 多反馈高通滤波器。Butterworth 频率响应被选为最大平坦幅度。多反馈拓扑结构被使用,这是因为它产生更多合理的器件值;也就是说,电容和电阻在可用的范围内,以选用低成本高精度器件。

第四级是一个增益为1 的10Hz 低通滤波器。它与第三级相似,但是增益为1.第三级和第四级的目标是创建一个4th阶低通滤波器。此滤波器被设计为一个二阶,Butterworth,多反馈,高通滤波器。Butterworth 频率响应被设计为最大平坦幅度。多反馈拓扑结构被使用,这是因为它产生更多合理的器件值;比如说,电容和电阻可选用有效的参数值,以实现低成本高精度器件选型。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭