当前位置:首页 > 电源 > 电源电路
[导读]通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中

通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。我们这里研究的主要是LC三端式振荡器。

一、电感反馈式三端振荡器

 

LC振荡电路原理及波形分析

 

图1 电感三点式振荡器

电感反馈震荡电路如图1,它的优点是:由于L1和L2之间有互感存在,所以容易起振。其次是改变回路电容来调整频率时,基本上不影响电路的反馈系数,比较方便。

二、电容反馈式三端振荡器

电容三点式振荡器又称为考毕兹振荡器,如图2:

 

LC振荡电路原理及波形分析

 

图2 电容三点式振荡器原理图

对于电容三点式振荡器,反馈系数F的表达式为:

 

LC振荡电路原理及波形分析

 

不考虑各极间电容的影响,这时谐振回路的总电容量为C1、C2的串联,即

 

LC振荡电路原理及波形分析

 

振荡频率的近似为

 

LC振荡电路原理及波形分析

 

与电感三端震荡电路想比,电容三端振荡器的优点是输出波形较好,这是因为集电极和基极电流可通过对谐波为低阻抗的电容支路回到发射极,所以高次谐波的反馈减弱,输出的谐波分量减少,波形更加接近于正弦波。其次,该电路中的不稳定电容(分布电容、器件的结电容等)都是与该电路并联的,因此适当的加大回路电容量,就可以减弱不稳定因素对振荡器的影响,从而提高了频率稳定度。最后,当工作频率较高时,甚至可以只利用器件的输入和输出电容作为回路电容。因而本电路适用于较高的工作频率。

三、振荡平衡条件一般表达式

震荡条件为 AF=1

振幅平衡条件 |AF|=1

四、起振条件和稳幅原理

振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求 |AF|>=1。既然 |AF|>=1,起振后就要产生增幅振荡,需要靠三极管大信号运用时的非线性特性去限制幅度的继续增加,这样电路必然产生失真。这就要靠选频网络的作用,选出多次谐波中的基波分量作为输出信号,以获得正弦波输出。也可以再反馈网络中加入非线性稳幅环节,用以调节放大电路的增益。从而达到稳幅目的。

五、LC振荡器的基本工作原理

振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。LC振荡器是一种能量转换器,由晶体管等有源器件和具有选频作用的无源网络及反馈网络组成。振荡器根据自身输出的波形可分为正弦波振荡器和非正弦波振荡器,正弦波振荡器在广播通讯、自动控制、仪器仪表、高频加热、超声探伤等领域有着广泛的应用;而非正弦振荡器能产生出矩形波(方波)、三角波、锯齿波等信号,这些信号可以用于测量设备、数字系统、自动控制及计算机设备中。本设计讨论的就是正弦波振荡器。其框图如图1所示。

 

LC振荡电路原理及波形分析

 

图3 振荡器原理框图

由所学知识可知,构成一个振荡器必须具备下列三个条件:

1) 一套振荡回路,包含两个(或两个以上)储能元件。在这两个元件中,当一个释放能量时,另一个就接收能量。释放与接收能量可以往返进行,其频率决定于元件的数值。

2) 一个能量来源,补充由振荡回路电阻所产生的能量损失。在晶体管振荡器中,这个能源就是直流电源。

3) 一个控制设备,可以使电源功率在正确的时刻补充电路的能量损失,以维持等幅振荡。这是由有源器件和正反馈电路完成的。

六、 电路

下图为LC正弦波电路振荡器的电路图,如图6:

 

LC振荡电路原理及波形分析

 

图6 总电路原理设计图

下图所示为LC正弦波振荡器的起振过程。LC正弦波振荡器起振过程波形图如图8:

 

LC振荡电路原理及波形分析

 

图8 LC正弦波振荡器起振过程

LC正弦波振荡器电路波形图,如图9:

 

LC振荡电路原理及波形分析

 

图9 LC正弦波振荡器电路波形图

观测仿真结果。测试振荡器各原件的作用,即短路或者开路该元件,观察振荡器的工作情况;进行LC振荡器波段工作研究,即测试振荡器在多宽的频率比范围内能平稳工作;研究LC振荡器的静态工作点、反馈系数及负载对振荡器的影响;测试LC振荡器的频率稳定度,即研究温度。电源和负载变化对振荡器频率稳定度的影响。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭