当前位置:首页 > 电源 > 电源电路
[导读]根据芯片测试结果,该射频接口电路能够在读写器4W等效发射功率下距读写器4m处为射频标签芯片提供足够的工作电压,并且在芯片近场时能够有效地稳定电源电压。解调信号基本正常可用。因此,该射频接口电路可满足超高频远距离无源射频标签芯片的要求,具有实用意义。

可以看到,标签接收到的功率主要和距离与载波频率相关,随距离的增大迅速减小,随频率的增加而减小。PreaderRreader也称为EIRP,即等效全向发射功率。它受到国际标准约束,通常在27~36dBm左右。例如,按照北美标准,读写器等效发射功率EIRP应小于4W,即36dBm。在自由空间中,915MHz的信号在4m处衰减为43.74dB。假设标签天线增益为1.5dBi,则在4m处无源射频标签可能获得的最大功率只有约-6.24dBm,238W。利用标准的偶极子天线,在915MHz天线端能够获得的电压约200mV。在如此低的输入信号幅度下,采用普通全波或半波整流电路无法获得所需的直流电压,因此需要采用倍压结构的电源恢复电路。

倍压结构的电源恢复电路如图1所示。图中的二极管在实际应用时通常用MOS管替代。输入正弦交流信号RFin=VAsint。在RFin负半周期时,M0导通,C1充电。C1两端能够获得的最大电压为VA-Vd,其中,Vd为MOS管M0两端的电压降。

t18.jpg

RFin正半周期时,节点1的最大电压为VA+(VA-Vd)。该电压使得M1导通,C2充电,直到C2两端达到最大电压,即节点2的最大电压,为VA+(VA-Vd)-Vd=2(VA-Vd)。依次类推,C3两端能够获得的最大电压为3(VA-Vd),节点4的最大电压为4(VA-Vd)。节点2N的最大电压为2N(VA-Vd)。于是,对于2N级电路,输出直流电压为:

 

关于超高频无源射频标签的射频接口电路设计

 

考虑输出负载的情况。假设负载抽取电流为Iout,输入交流信号频率为fsig,所有电容值都为C,则输出电压降低2NIout/Cfsig。于是,考虑输出负载情况下的输出电压为:

 

关于超高频无源射频标签的射频接口电路设计

 

稳压

在4W等效发射功率下,距读写器20cm处,采用增益1.5dBi的接收天线,标签接收到的最大功率达到95.5mW,超过标签在4m处接收到最大功率的400倍。为了保证标签在近场和远场都能够可靠工作,需要有效的稳压电路使得标签在近场能够保持电压不超过正常工作电压范围。

通常的并联式稳压结构如图2所示。当Vout大于稳压电路开启阈值时,稳压电路内的泻流管Mp开启,从泻流管泻放电流,使电压降低。

 

关于超高频无源射频标签的射频接口电路设计

 

解调

本文提出的射频接口是针对满足ANSNCITS2561999射频标签协议的标签芯片设计的。根据ANSNCITS2561999射频标签协议规范,读写器到标签的信号为OnOffKey(OOK)调制信号。

因此,解调电路可采用二极管包络检波解调实现。

设计实现

电源恢复电路

根据设计指标,要在915MHz信号输入幅度200mV,负载电流20A时获得大于2V的直流电压。则根据(3)式,可得N > 5。因此,所需倍压电路最低级数为12级。考虑到MOS管导通压降的损失和寄生效应带来的损失,电源恢复电路采用16级的倍压电路结构,利用零阈值NMOS管实现。倍压式电源恢复电路的末端最后一个电容为储能电容,取200pF。

稳压电路

根据设计协议要求,输入信号为OOK信号在OOK信号的关断时刻,由于图2中泻流管Mp无法瞬间关闭,于是继续从储能电容Cs上抽取电流,从而导致电源电压Vout出现较大下脉冲凹陷。为解决该问题,将并联稳压电路改进,如图3所示。泻流管Mo1和Mo2的电流抽取点从Vout端移至节点p。这样,当泻流管开启,OOK信号的关断时刻到来时,由于二极管连接的MOS管M3、M4的反向截止作用,储能电容Cs上的电荷不会从泻流管上被抽取走,从而避免了泻流管造成的电源电压下脉冲凹陷的问题。稳压电路稳压值设计在2.4V。

解调电路

解调电路如图4所示。M1~M4为4级倍压单元,起到检波二极管的作用。由于并联稳压电路的泻流管无法瞬间关断,因此,在OOK信号关断时刻,泻流管抽取电容C4上的电荷。电容C4取值较小,因此,p1点电平迅速下降,形成较大的下脉冲凹陷,经过后级的整形电路,输出标准的解调波形。

流片验证

该射频前端模块作为超高频长距离无源射频标签芯片的一部分,在UMC0.18m混合信号工艺下设计实现,并流片验证。芯片照片如图5所示。

基于一种超高频无源射频标签的射频接口电路设计

测试结果

电源恢复及稳压电路测试

利用8753ES网络分析仪作为电源恢复电路激励源;中心频率设定在915MHz,扫频宽度设定为1Hz,以此来近似输出915MHz的单频载波信号。

网络分析仪测试端输出功率从-8dBm到10dBm,按照步进0.5dBm,测试各功率点驻波比SWR和电源恢复电路电压VDD。由于网络分析仪功率输出准确度较低,因此,再利用功率计,测量每个测试输出功率下网络分析仪的实际输出功率Ps。电源恢复电路的实际输入功率为:

根据Pin和VDD,绘制出反映电源恢复电路性能的输入输出特性曲线,如图6所示。

基于一种超高频无源射频标签的射频接口电路设计

电路带200k负载,300pF储能电容。输入功率229W时,电源电压到达1.85V。稳压电路工作良好,电源电压稳定在2.3V。

解调电路测试

读写器发送1s脉宽的OOK调制信号。解调电路输出波形如图7所示。下脉冲上升时间较长是由于示波器探头引入的16pF电容所致。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭